Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 090503    DOI: 10.1088/1674-1056/21/9/090503
GENERAL Prev   Next  

Stochastic properties of tumor growth with coupling between non-Gaussian and Gaussian noise terms

Jiang Li-Li (蒋莉莉), Luo Xiao-Qin (罗晓琴), Wu Dan (吴丹), Zhu Shi-Qun (朱士群)
School of Physical Science and Technology, Soochow University, Suzhou 215006, China
Abstract  Dynamical behavior of tumor-growth model with coupling between non-Gaussian and Gaussian noise terms is investigated. The departure from the Gaussian noise can not only reduce the probability of tumor cells in the active state, induce the minimum of the average tumor-cell population to move toward a smaller non-Gaussian noise, but also decrease the mean first-passage time. The increase of white-noise intensity can increase the tumor-cell population and shorten the mean first-passage time, while the coupling strength between noise terms has opposite effects, and the noise correlation time has a very small effect.
Keywords:  tumor growth      stochastic property      non-Gaussian noise      Gaussian noise  
Received:  13 December 2011      Revised:  23 April 2012      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.40.Ca (Noise)  
  05.10.Gg (Stochastic analysis methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11005077, 11105095, and 11074184) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 10KJD140003).
Corresponding Authors:  Luo Xiao-Qin, Zhu Shi-Qun     E-mail:  xqluo@suda.edu.cn; szhu@suda.edu.cn

Cite this article: 

Jiang Li-Li (蒋莉莉), Luo Xiao-Qin (罗晓琴), Wu Dan (吴丹), Zhu Shi-Qun (朱士群) Stochastic properties of tumor growth with coupling between non-Gaussian and Gaussian noise terms 2012 Chin. Phys. B 21 090503

[1] Ehrlich P 1909 Ned. Tijdschr. Geneeskd. 5 273 (in Dutch)
[2] Burnet F M 1957 Br. Med. J. 1 841
[3] Dunn G P, Old L J and Schreiber R D 2004 Annu. Rev.Immunol. 22 329
[4] Kim R, Emi M and Tanabe K 2007 Immunol. 121 1
[5] Bose T and Trimper S 2009 Phys. Rev. E 79 051903
[6] Vilar J M G and Sol′e R V 1998 Phys. Rev. Lett. 80 18
[7] Cai J C, Wang C J and Mei D C 2006 Chin. Phys. Lett.24 1162
[8] Escudero C 2006 Phys. Rev. E 73 020902
[9] Fiasconaro A and Nowak E G 2006 Phys. Rev. E 74041904
[10] Zhong W R, Shao Y Z and He Z H 2006 Phys. Rev. E 73060902
[11] Zhong W R, Shao Y Z and He Z H 2006 Phys. Rev. E 74011916
[12] Br′u A, Albertos S, L′opez Garc′?a-Asenjo J A and Br′u I2004 Phys. Rev. Lett. 92 238101
[13] Wang C J, Wei Qun, Zheng B B and Mei D C 2008 Chin.Phys. Soc. 57 3
[14] Jia Z L 2010 Chin. Phys. B 19 020504
[15] Tian J and Chen Y 2010 Chin. Phys. Lett. 27 030502
[16] Du L C and Mei D C 2010 Phys. Lett. A 374 3275
[17] d’Onofrio A 2010 Phys. Rev. E 81 021923
[18] Teng M W L, Swann J B, Koebel C M, Schreiber R D,Smyth M J and Leukoc J 2008 Biol. 84 998
[19] Wang C J 2010 Chin. Phys. B 19 030503
[20] Wang C J and Mei D C 2008 Chin. Phys. Soc. 57 7
[21] Wang B 2011 Chin. Phys. B 20 114207
[22] Duarte J R R, Vermelho M V D and Lyra M L 2008 Phys-ica A 387 1446
[23] Newman M E J 2005 Contemp. Phys. 46 323
[24] Wiesenfeld K, Pierson D, Pantazelou E, Dames Ch andMoss F 1994 Phys. Rev. Lett. 72 2125
[25] Nozaki D, Mar D J, Grigg P and Collins J J 1999 Phys.Rev. Lett. 82 2402
[26] Zhang J J and Jin Y F 2012 Chin. Phys. Soc. 61 13
[27] Fuentes M A, Toral R and Wio H S 2001 Physica A 295114
[28] Fuentes M A, Wio H S and Toral R 2002 Physica A 30391
[29] Wio H S and Toral R 2004 Physica D 193 161
[30] Wu D, Luo X and Zhu S 2007 Physica A 373 203
[31] Valleron A J and Macdonald P D M 1978 Biomathematicsand Cell Kinetics (Elsevier: North-Holland)
[32] Murray J D 2002 Mathematical Biology (vol. 1) (Berlin:Springer-Verlag)
[33] Murray J D 2003 Mathematical Biology (vol. 2) (Berlin:Springer-Verlag)
[34] Bellomo N and Delitala M 2008 Phys. Life. Rev. 5 183
[35] Br′u A, Albertos S, Subiza J L, L′opez J, Asenjo G andBr′u I 2003 Biophys. J. 85 2948
[36] Gardiner C W 1985 Handbook of Stochastic Methods (2ndedn.) (Berlin: Springer)
[37] Wio H S 1994 An Introduction to Stochastic Processes andNonequilibrium Statistical Physics (Singapore: World Scientific)
[38] van Kampen N G 1982 Stochastic Processes in Physicsand Chemistry (Elsevier: North-Holland)
[39] H¨anggi P, Talkner P and Borkovec M 1990 Rev. Mod.Phys. 62 251
[1] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[2] Effects of Lévy noise and immune delay on the extinction behavior in a tumor growth model
Hao Meng-Li (郝孟丽), Xu Wei (徐伟), Gu Xu-Dong (谷旭东), Qi Lu-Yuan (戚鲁媛). Chin. Phys. B, 2014, 23(9): 090501.
[3] Effects of non-Gaussian noise on the dynamical properties of a logistic system
Wang Can-Jun (王参军). Chin. Phys. B, 2013, 22(6): 060502.
[4] Ballistic diffusion induced by non-Gaussian noise
Qin Li (覃莉), Li Qiang (李强). Chin. Phys. B, 2013, 22(3): 038701.
[5] Effects of non-Gaussian noise on a calcium oscillation system
Wang Bing (王兵), Sun Ya-Qin (孙雅琴), Tang Xu-Dong (唐旭东). Chin. Phys. B, 2013, 22(1): 010501.
[6] Stationary properties of a single-mode laser system with non-Gaussian and Gaussian noise
Wang Bing(王兵) and Wu Xiu-Qing(吴秀清) . Chin. Phys. B, 2011, 20(11): 114207.
[7] Upper bound for the time derivative of entropy for a stochastic dynamical system with double singularities driven by non-Gaussian noise
Guo Pei-Rong(郭培荣), Xu Wei(徐伟), and Liu Di(刘迪). Chin. Phys. B, 2010, 19(3): 030520.
No Suggested Reading articles found!