Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 038702    DOI: 10.1088/1674-1056/22/3/038702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Feasibility of similarity coefficient map in improving morphological evaluation of T2* weighted MRI for renal cancer

Wang Hao-Yu (王浩宇)a, Hu Jianib, Xie Yao-Qin (谢耀钦)c, Chen Jie (陈杰)d, Yu Amye, Wei Xin-Hua (魏新华)f, Dai Yong-Ming (戴勇鸣)g, Li Mengb, Bao Shang-Lian (包尚联)a, E. M. Haackeb
a Beijing Key Laboratory of Medical Physics and Engineering, Peking University, Beijing 100871, China;
b Department of Radiology, Wayne State University, Detroit 48201, USA;
c Chinese Academy of Sciences, Key Laboratory of Health Information , Institute of Advanced Technology, Shenzhen 518055, China;
d Changzhou First People's Hospital, Changzhou 213003, China;
e College of Literature Science and the Arts, University of Michigan, Ann Arbor, Michigan 48103, USA;
f Department of Radiology, Guangzhou First Municipal People's Hospital, Guangzhou 510180, China;
g Siemens Healthcare China, MR Collaboration NE Asia, Shanghai 210318, China
Abstract  The purpose of this paper is to investigate the feasibility of similarity coefficient map (SCM) in improving morphological evaluation of T2* weighted (T2*W) magnatic resonance imaging (MRI) for renal cancer. Simulation studies and in vivo 12-echo T2*W experiments for renal cancers were performed for this purpose. The results of the first simulation study suggest that SCM can reveal small structures which are hard to be distinguished from the background tissue in T2*W images and the corresponding T2* map. The capability of improving morphological evaluation is likely due to the improvement in signal to noise ratio (SNR) and carrier to noise ratio (CNR) by SCM technique. Compared with T2*W images, SCM can improve SNR by a factor ranging from 1.87 to 2.47. Compared with T2* maps, SCM can improve SNR by a factor ranging from 3.85 to 33.31. Compared with T2*W images, SCM can improve CNR by a factor raging from 2.09 to 2.43. Compared with T2* maps SCM can improve CNR by a factor raging from 1.94 to 8.14. For a given noise level, the improvements of SNR and CNR depend mainly on the original SNRs and CNRs in T2*W images, respectively. In vivo experiments confirmed the results of the first simulation study. The results of the second simulation study suggest that more echoes are used to generate SCM, and higher SNR and CNR can be achieved in SCM. In conclusion, SCM can provide improved morphological evaluation of T2*W MR images for renal cancer by unveiling fine structures which are ambiguous or invisible in the corresponding T2*W MR images and T2* maps. What is more, in practical application, for a fixed total sampling time, one should increase the number of echoes as much as possible to achieve SCMs with better SNR and CNR.
Keywords:  renal cancer      T2* weighted MRI      similarity coefficient map  
Received:  19 September 2012      Revised:  13 November 2012      Accepted manuscript online: 
PACS:  87.61.-c (Magnetic resonance imaging)  
  87.57.C- (Image quality)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB707701) and the National Key Technology R&D Program of China (Grant Nos. 2011BAI12B05 and 2012BAI23B07).
Corresponding Authors:  Bao Shang-Lian     E-mail:  bao@pku.edu.cn

Cite this article: 

Wang Hao-Yu (王浩宇), Hu Jiani, Xie Yao-Qin (谢耀钦), Chen Jie (陈杰), Yu Amy, Wei Xin-Hua (魏新华), Dai Yong-Ming (戴勇鸣), Li Meng, Bao Shang-Lian (包尚联), E. M. Haacke Feasibility of similarity coefficient map in improving morphological evaluation of T2* weighted MRI for renal cancer 2013 Chin. Phys. B 22 038702

[1] Society A C 2012 Cancer Facts and Figures (Atlanta: American Cancer Society)
[2] Kamel I R, Hochman M G, Keogan M T, Eng J, Longmaid H E, Dewolf W and Edelman R R 2004 J. Comput. Assist. Tomogr. 28 327
[3] Harmon W J, King B F and Lieber M M 1996 J. Urol. 155 863
[4] Takahashi S, Ueda J, Furukawa T, Higashino K, Tsujihata M, Itatani H, Narumi Y and Nakamura H 1996 J. Comput. Assist. Tomogr. 20 863
[5] Han X N, Peng L R, Liu G H and Wang J 2005 Chin. J. Med. Imag. Technol. 21 776
[6] Adey G S, Pedrosa I, Rofsky N M, Sanda M G and Dewolf W C 2008 Urology 71 47
[7] Ramchandani P, Soulen R L, Schnall R I, Seidmon E J, Friedman A C, Radecki P D and Caroline D F 1986 Urology 27 564
[8] Amendola M A, King L R, Pollack H M, Gefter W, Kressel H Y and Wein A J 1990 Cancer 66 40
[9] Reznek R H 1996 Eur. Radiol. 6 120
[10] Russo P 2000 Semin. Oncol. 27 160
[11] Heidenreich A and Ravery V 2004 World J. Urol. 22 307
[12] Spero M, Brkljacic B, Kolaric B and Marotti M 2010 Clin. Imaging 34 441
[13] van der Veldt A A M, Meijerink M R, van den Eertwegh A J M and Boven E 2010 Target. Oncol. 5 95
[14] Prasad P V, Edelman R R and Epstein F H 1996 Circulation. 94 3271
[15] Tanaka Y O, Anno I, Itai Y and Abe T 1993 J. Comput. Assist. Tomogr. 17 749
[16] Mcclennan B L and Deyoe L A 1994 Radiol. Clin. N. Am. 32 55
[17] Kim J K, Kim T K, Ahn H J, Kim C S, Kim K R and Cho K S 2002 Am. J. Roentgenol. 178 1499
[18] May M, Brookman-Amissah S, Roigas J, Gilfrich C P, Pflanz S, Hoschke B and Gunia S 2010 Urol. Oncol.-Semin. Orig. Investig. 28 274
[19] Jeong I G, Jeong C W, Hong S K, Kwak C, Lee E and Lee S E 2006 Urology. 67 709
[20] Klatte T, Chung J, Leppert J T, Lam J S, Pantuck A J, Figlin R A and Belldegrun A S 2007 BJU Int. 99 821
[21] Cho H J, Kim S J, Ha U S, Hong S H, Kim J C, Choi Y J and Hwang T K 2009 Eur. Urol. 56 1006
[22] Saha P K and Udupa J K 2001 IEEE Trans. Med. Imaging. 20 1140
[23] Placidi G, Alecci M and Sotgiu A 2003 Phys. Med. Biol. 48 1987
[24] Gerig G, Kubler O, Kikinis R and Jolesz F A 1992 IEEE Trans. Med. Imaging. 11 221
[25] Zu Z L, Zhou K, Zhang S G, Gao S and Bao S L 2008 Chin. Phys. B 17 328
[26] Schabel M C and Parker D L 2008 Phys. Med. Biol. 53 2345
[27] Saritas E U, Lee J H and Nishimura D G 2011 IEEE Trans. Med. Imaging 30 424
[28] Reeder S B, Herzka D A and Mcveigh E R 2004 Magn. Reson. Med. 52 123
[29] Halse M, Rioux J, Romanzetti S, Kaffanke J, Macmillan B, Mastikhin I, Shah N J, Aubanel E and Balcom B J 2004 J. Magn. Reson. 169 102
[30] Shapiro M D 2006 Magnetic Resonance Imaging Clinics of North America 14 97
[31] Hutton C, Josephs O, Stadler J, Featherstone E, Reid A, Speck O, Bernarding J and Weiskopf N 2011 Neuroimage 57 101
[32] Greenman R L, Shirosky J E, Mulkern R V and Rofsky N M 2003 J. Magn. Reson. Imaging 17 648
[33] Fushimi Y, Miki Y, Urayama S I, Okada T, Mori N, Hanakawa T, Fukuyama H and Togashi K 2007 Eur. Radiol. 17 2921
[34] Debatin J 2004 Rofo-Fortschr. Gebiet Rontgenstrahlen Bildgeb. Verfahr. 176 787
[35] Haacke E M, Li M and Juvvigunta F 2011 International Society for Magnetic Resonance in Medicine May 7-13, 2011 Montréal, Québec, Canada
[36] Li M, Bashir A, Yu Y, Xuan Y, Latif Z, Garbern J, Hu J and Haacke E M 2010 International Society for Magnetic Resonance in Medicine May 1-7, 2010 Stockholm, Sweden
[37] Haacke E M, Li M and Juvvigunta F 2012 Magn. Reson. Imaging
[38] Haacke E M, Brown R W, Thompson M R and Venkatesan R 1999 Magnetic Resonance Imaging : Physical Principles and Sequence Design (New York: John Wiley & Sons)
[39] Coupe P, Manjon J V, Gedamu E, Arnold D, Robles M and Collins D L 2010 Med. Image Anal. 14 483
[40] Hashemieh M, Azarkeivan A, Akhlaghpoor S, Shirkavand A and Sheibani K 2012 Archives of Iranian Medicine 15 91
[41] Henninger B, Kremser C, Rauch S, Eder R, Zoller H, Finkenstedt A, Michaely H J and Schocke M 2012 Eur. Radiol. 22 2478
[42] Hatabu H, Alsop D C, Listerud J, Bonnet M and Gefter W B 1999 Eur. J. Radiol. 29 245
[43] Correia M M, Newcombe V F J and Williams G B 2011 Neuroimage 57 1103
[44] Chavhan G B, Babyn P S, Thomas B, Shroff M M and Haacke E M 2009 Radiographics 29 1433
[45] Elster A D 1993 Radiology 186 1
[1] Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in T2*-w magnetic resonance imaging
Yu Shao-De (余绍德), Wu Shi-Bin (伍世宾), Wang Hao-Yu (王浩宇), Wei Xin-Hua (魏新华), Chen Xin (陈鑫), Pan Wan-Long (潘万龙), Hu Jiani, Xie Yao-Qin (谢耀钦). Chin. Phys. B, 2015, 24(12): 128711.
No Suggested Reading articles found!