Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 037502    DOI: 10.1088/1674-1056/23/3/037502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermodynamic properties of Heisenberg magnetic systems

Qin Wei (秦伟), Wang Huai-Yu (王怀玉), Long Gui-Lu (龙桂鲁)
Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  In this paper, we present a comprehensive investigation of the effects of the transverse correlation function (TCF) on the thermodynamic properties of Heisenberg antiferromagnetic (AFM) and ferromagnetic (FM) systems with cubic lattices. The TCF of an FM system is positive and increases with temperature, while that of an AFM system is negative and decreases with temperature. The TCF lowers internal energy, entropy and specific heat. It always raises the free energy of an FM system but raises that of an AFM system only above a specific temperature when the spin quantum number is S≥1. Comparisons between the effects of the TCFs on the FM and AFM systems are made where possible.
Keywords:  Heisenberg magnetic system      thermodynamic property      transverse correlation function      Green’      s function method  
Received:  10 November 2013      Revised:  05 December 2013      Accepted manuscript online: 
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
  75.40.Mg (Numerical simulation studies)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB927402) and the National Natural Science Foundation of China (Grant Nos. 11074145 and 61275028).
Corresponding Authors:  Wang Huai-Yu     E-mail:  wanghuaiyu@mail.tsinghua.edu.cn

Cite this article: 

Qin Wei (秦伟), Wang Huai-Yu (王怀玉), Long Gui-Lu (龙桂鲁) Thermodynamic properties of Heisenberg magnetic systems 2014 Chin. Phys. B 23 037502

[1] Weiss P 1907 J. Phys. 6 661
[2] van Vleck J H 1941 J. Chem. Phys. 9 85
[3] Opechowski W 1937 Physica 4 181
[4] Opechowski W 1939 Physica 6 1112
[5] Oguchi T 1955 Prog. Theor. Phys. 13 148
[6] Tyablikov S V 1959 Ukr. Mat. Zh. 11 287
[7] Tahir-Kheli R A and ter Harr D 1962 Phys. Rev. 127 88
[8] Tahir-Kheli R A and ter Harr D 1962 Phys. Rev. 127 95
[9] Callen H B 1963 Phys. Rev. 130 890
[10] Cheng C and Pu F 1964 Acta Phys. Sin. 20 624
[11] Pu C F 1960 Dokl. Akad. Nauk SSSR 136 1244 (English transl.: 1960 Soviet Phys.-Doklady 5 128)
[12] Lee K H and Liu S H 1967 Phys. Rev. 159 390
[13] Oguchi T and Honma A 1963 J. Appl. Phys. 34 1153
[14] Lines M E 1963 Phys. Rev. 131 540
[15] Lines M E 1964 Phys. Rev. 135 A1336
[16] Lines M E 1965 Phys. Rev. 139 A1304
[17] Anderson F B and Callen H B 1964 Phys. Rev. 136 A1068
[18] Lines M E and Jones E D 1965 Phys. Rev. 139 A1313
[19] Lines M E and Jones E D 1966 Phys. Rev. 141 525
[20] Wang H Y, Jen S U and Yu J Z 2006 Phys. Rev. B 73 094414
[21] Jiang W and Guo A B 2007 Chin. Phys. 16 3832
[22] Qiu R K, Song P P, Zhang Z D and Guo L Q 2008 Chin. Phys. B 17 3894
[23] Kuz’min E V, Ovchinnikov S G and Singh D J 2003 Phys. Rev. B 68 024409
[24] Fischer G, Däne M, Ernst A, Bruno P, Lüders M, Szotek Z, Temmerman W and Hergert W 2009 Phys. Rev. B 80 014408
[25] Rausch R and Nolting W 2011 Phys. Rev. B 84 184428
[26] Rusz J, Turek I and Diviš M 2005 Phys. Rev. B 71 174408
[27] Ricardo de Sousa J and Plascak J A 2008 Phys. Rev. B 77 024419
[28] Bose I, Chatterjee S and Majumdar C K 1984 Phys. Rev. B 29 2741
[29] Swendsen R H 1973 J. Phys. C: Solid State Phys. 6 3763
[30] Brahmachari R and Bhattacharjee S B 1980 J. Phys. C: Solid State Phys. 13 4735
[31] Nielsen M, Ryan D H, Guo H and Zuchermann M 1996 Phys. Rev. B 53 343
[32] Swendsen R H 1975 Phys. Rev. B 11 1935
[33] Ghosh D K 1973 Phys. Rev. B 8 392
[34] Das A N, Mandal P, Choudhury P and Ghosh B 1988 Phys. Rev. B 38 4716
[35] Radošević S M, Rutonjski M S, Pantić M R, Pavkov-Hrvojević M V, Kapor D V and Škrinjar M G 2011 Solid State Commun. 151 1753
[36] Hu A Y and Wang Q 2011 Solid State Commun. 151 102
[37] Sung C C 1966 Phys. Rev. 148 299
[38] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[39] Bogolyubov N N and Tyablikov S V 1959 Sov. Phys. Dokl. 4 589
[40] Tyabikov S V 1967 Methods in the Quantum Theory of Magnetism (New York: Plenum Press)
[41] Cremasco J D and Pires A S T 1990 J. Phys.: Condens. Matter 2 5575
[42] Majlis N 2000 The Quantum Theory of Magnetism (Singapore: World Scientific Publishing Co. Pte. Ltd.)
[43] Fröbrich P and Kuntz P J 2006 Phys. Rep. 432 223
[44] Wang H Y, Huang C, Qian M and Wang E G 2004 J. Appl. Phys. 95 7551
[45] Wang H Y 2012 Green’s Function in Condensed Matter Physics (Beijing: Science Press and Oxford: Science Press and Alpha Internation Ltd.)
[46] Callen H B 1960 Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics (New York: John Wiley and Sons. Inc)
[1] Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺). Chin. Phys. B, 2021, 30(7): 070302.
[2] Theoretical design of single-molecule NOR and XNOR logic gates by using transition metal dibenzotetraaza[14]annulenes
Zi-Qun Wang(王子群), Fei Tang(唐菲), Mi-Mi Dong(董密密), Ming-Lang Wang(王明郎), Gui-Chao Hu(胡贵超), Jian-Cai Leng(冷建材), Chuan-Kui Wang(王传奎), Guang-Ping Zhang(张广平). Chin. Phys. B, 2020, 29(6): 067202.
[3] Polarization resolved analysis of phonon transport in a multi-terminal system
Yun-Feng Gu(顾云风), Liu-Tong Zhu(朱留通), Xiao-Li Wu(吴晓莉). Chin. Phys. B, 2019, 28(12): 124401.
[4] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[5] Quantum transport through a Z-shaped silicene nanoribbon
A Ahmadi Fouladi. Chin. Phys. B, 2017, 26(4): 047304.
[6] Improvement of the thermoelectric efficiency of pyrene-based molecular junction with doping engineering
Mohammad Farid Jamali, Meysam Bagheri Tagani, Hamid Rahimpour Soleimani. Chin. Phys. B, 2017, 26(12): 123101.
[7] Phase transition and thermodynamic properties of ThO2:Quasi-harmonic approximation calculations and anharmonic effects
Li Qiang (李强), Yang Jun-Sheng (杨俊升), Huang Duo-Hui (黄多辉), Cao Qi-Long (曹启龙), Wang Fan-Hou (王藩侯). Chin. Phys. B, 2014, 23(1): 017101.
[8] The influence of 3d-metal alloy additions on the elastic and thermodynamic properties of CuPd3
Huang Shuo (黄烁), Zhang Chuan-Hui (张川晖), Sun Jing (孙婧), Shen Jiang (申江). Chin. Phys. B, 2013, 22(8): 083401.
[9] Phase transition and thermodynamic properties of BiFeO3 from first-principles calculations
Li Qiang (李强), Huang Duo-Hui (黄多辉), Cao Qi-Long (曹启龙), Wang Fan-Hou (王藩侯). Chin. Phys. B, 2013, 22(3): 037101.
[10] Thermodynamic properties of 3C–SiC
B. Y. Thakore, S. G. Khambholja, A. Y. Vahora, N. K. Bhatt, A. R. Jani. Chin. Phys. B, 2013, 22(10): 106401.
[11] Analysis and design of the taper in metal-grating periodic slow-wave structures for rectangular Cerenkov masers
Chen Ye(陈晔), Zhao Ding(赵鼎), Wang Yong(王勇), and Shu Wen(舒雯) . Chin. Phys. B, 2012, 21(5): 058401.
[12] Relativistic thermodynamic properties of a weakly interacting Fermi gas in a weak magnetic field
Men Fu-Dian(门福殿), Liu Hui(刘慧), Fan Zhao-Lan(范召兰), and Zhu Hou-Yu(朱后禹). Chin. Phys. B, 2009, 18(7): 2649-2653.
[13] Theoretical study of a melting curve for tin
Xi Feng(习锋) and Cai Ling-Cang(蔡灵仓). Chin. Phys. B, 2009, 18(7): 2898-2900.
[14] Finite-size effects in a D-dimensional ideal Fermi gas
Su Guo-Zhen(苏国珍), Ou Cong-Jie(欧聪杰), Wang A Qiu-Ping, and Chen Jin-Can(陈金灿). Chin. Phys. B, 2009, 18(12): 5189-5195.
[15] Electronic,  thermodynamic and elastic properties of pyrite RuO2
Yang Ze-Jin (杨则金), Guo Yun-Dong (郭云东), Wang Guang-Chang (王光昶), Li Jin (李劲), Dai Wei (戴伟), Liu Jin-Chao (刘锦超), Cheng Xin-Lu (程新路), Yang Xiang-Dong (杨向东). Chin. Phys. B, 2009, 18(11): 4981-4987.
No Suggested Reading articles found!