Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 034204    DOI: 10.1088/1674-1056/22/3/034204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Pulse collapse and blue-shifted enhanced supercontinuumin photonic crystal fiber

Liu Wen-Jun (刘文军), Pang Li-Hui (庞利辉), Lin Xiang (林翔), Gao Ren-Xi (高仁喜), Song Xiao-Wei (宋晓伟)
Department of Optoelectronics Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
Abstract  The blue-shifted supercontinuum generation in a photonic crystal fiber pumped by high peak power femtosecond pulses with wavelength located in the anomalous dispersion region is investigated experimentally and numerically. The formation of a blue-shifted enhanced supercontinuum due to the pulse collapse is demonstrated. The process of the pulse collapse is measured by using the grating-eliminated no-nonsense observation of ultrafast incident laser light e-fields technique (GRENOUILLE). Numerical simulations in spectral and temporal domains are conducted. The data from numerical simulations are in good agreement with the experimental results. Our experimental results and numerical simulations show that the pulse collapse is the determining factor in the generation of blue-shifted supercontinuum.
Keywords:  femtosecond pulse      ultrafast measurement      supercontinuum  
Received:  23 July 2012      Revised:  30 September 2012      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61178025), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2009AL002 and ZR2010FQ007), and the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology, China (Grant No. HIT.NSRIF. 2008087).
Corresponding Authors:  Liu Wen-Jun     E-mail:  liuwenjun86@163.com

Cite this article: 

Liu Wen-Jun (刘文军), Pang Li-Hui (庞利辉), Lin Xiang (林翔), Gao Ren-Xi (高仁喜), Song Xiao-Wei (宋晓伟) Pulse collapse and blue-shifted enhanced supercontinuumin photonic crystal fiber 2013 Chin. Phys. B 22 034204

[1] Agrawal G P 2007 Nonlinear Fiber Optics (4th edn.) (San Diego: Academic Press)
[2] Genty G, Lehtonen M and Ludvigsen H 2004 Opt. Express 12 4614
[3] Genty G, Dudley J M and Eggleton B J 2009 Appl. Phys. B 94 187
[4] Song R, Hou J, Chen S P, Yang W Q and Lu Q S 2012 Chin. Phys. B 21 094211
[5] Tai K, Hasegawa A and Bekki N 1988 Opt. Lett. 13 392
[6] Beaud P, Hodel W, Zysset B and Weber H P 1987 IEEE Journal of Quantum Electronics 23 1938
[7] Kodama Y and Hasegawa A 1987 IEEE Journal of Quantum Electronics 23 510
[8] Mitschke F M and Mollenauer L F 1986 Opt. Lett. 11 659
[9] Chen W, Meng Z and Zhou H J 2012 Chin. Phys. B 21 094215
[10] Herrmann J and Nazarkin A 1994 Opt. Lett. 19 2065
[11] Herrmann J, Griebner U, Zhavoronkov N, Husakou A, Nickel D, Knight J C, Wadsworth W J, Russell J and Korn G 2002 Phys. Rev. Lett. 88 173901
[12] Jin A J, Wang Z F, Hou J, Guo L and Jiang Z F 2012 Acta Phys. Sin. 61 124211 (in Chinese)
[13] Gross B and Manassah J T 1992 J. Opt. Soc. Am. B 9 1813
[14] Hilligsoe K M and Paulsen H N 2003 J. Opt. Soc. Am. B 20 1887
[15] Dudley J, Gu X, Xu L, Kimmel M, Zeek E, O'Shea P, Trebino R, Coen S and Windeler R 2002 Opt. Express 10 1215
[16] Cao Q, Gu X, Zeek E, Kimmel M, Trebino R, Dudley and Windeler R S 2003 Appl. Phys. B 77 239
[17] Trebino R, Bowlan P, Gabolde P, Gu X, Akturk S and Kimmel M 2009 Laser & Photon. Rev. 3 314
[18] Husakou A V and Herrmann J 2001 Phys. Rev. Lett. 87 203901
[19] Karpman V I 1993 Phys. Rev. E 47 2073
[20] Dudley J M and Taylor J R 2010 Supercontinuum Generation in Optical Fibers (Cambridge: Cambridge University Press)
[21] Dianov E M, Karasik A Y, Mamyshev P V, Prokhorov A M, Serkin V N, Stelmakh M F and Fomichev A A 1985 JETP Lett. 41 294
[22] Golovchenko E A, Dianov E M, Prokhorov A M and Serkin V N 1985 JETP Lett. 42 74
[1] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[2] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[3] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[4] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[5] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[6] Picosecond terahertz pump-probe realized from Chinese terahertz free-electron laser
Chao Wang(王超), Wen Xu(徐文), Hong-Ying Mei(梅红樱), Hua Qin(秦华), Xin-Nian Zhao(赵昕念), Hua Wen(温华), Chao Zhang(张超), Lan Ding(丁岚), Yong Xu(徐勇), Peng Li(李鹏), Dai Wu(吴岱), Ming Li(黎明). Chin. Phys. B, 2020, 29(8): 084101.
[7] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[8] Orientation-dependent depolarization of supercontinuum in BaF2 crystal
Zi-Xi Li(李子熙), Cheng Gong(龚成), Tian-Jiao Shao(邵天骄), Lin-Qiang Hua(华林强), Xue-Bin Bian(卞学滨), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2020, 29(1): 014212.
[9] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[10] Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton
Song-Tao Fan(樊松涛), Yan-Yan Zhang(张颜艳), Lu-Lu Yan(闫露露), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2019, 28(6): 064204.
[11] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
[12] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[13] Active hyperspectral imaging with a supercontinuum laser source in the dark
Zhongyuan Guo(郭中源), Yu Liu(刘煜), Xin Zheng(郑鑫), Ke Yin(殷科). Chin. Phys. B, 2019, 28(3): 034206.
[14] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[15] Femtosecond Tm-Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator
Jinho Lee(李珍昊), Ju Han Lee(李周翰). Chin. Phys. B, 2018, 27(9): 094219.
No Suggested Reading articles found!