Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084101    DOI: 10.1088/1674-1056/ab961b

Picosecond terahertz pump-probe realized from Chinese terahertz free-electron laser

Chao Wang(王超)1,2, Wen Xu(徐文)1,3, Hong-Ying Mei(梅红樱)4,1, Hua Qin(秦华)5, Xin-Nian Zhao(赵昕念)1,2, Hua Wen(温华)1,2, Chao Zhang(张超)1, Lan Ding(丁岚)3, Yong Xu(徐勇)6, Peng Li(李鹏)6, Dai Wu(吴岱)6, Ming Li(黎明)6
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 School of Physics and Astronomy and Yunnan Key Laboratory for Quantum Information, Yunnan University, Kunming 650091, China;
4 Faculty of Information Engineering, Huanghuai University, Zhumadian 463000, China;
5 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China;
6 Institute of Applied Electronics, Chinese Academy of Engineering Physics, Mianyang 621900, China

Electron energy relaxation time τ is one of the key physical parameters for electronic materials. In this study, we develop a new technique to measure τ in a semiconductor via monochrome picosecond (ps) terahertz (THz) pump and probe experiment. The special THz pulse structure of Chinese THz free-electron laser (CTFEL) is utilized to realize such a technique, which can be applied to the investigation into THz dynamics of electronic and optoelectronic materials and devices. We measure the THz dynamical electronic properties of high-mobility n-GaSb wafer at 1.2 THz, 1.6 THz, and 2.4 THz at room temperature and in free space. The obtained electron energy relaxation time for n-GaSb is in line with that measured via, e.g., four-wave mixing techniques. The major advantages of monochrome ps THz pump-probe in the study of electronic and optoelectronic materials are discussed in comparison with other ultrafast optoelectronic techniques. This work is relevant to the application of pulsed THz free-electron lasers and also to the development of advanced ultrafast measurement technique for the investigation of dynamical properties of electronic and optoelectronic materials.

Keywords:  free-electron laser      ultrafast measurements      picosecond phenomena  
Received:  10 March 2020      Revised:  12 April 2020      Accepted manuscript online: 
PACS:  41.60.Cr (Free-electron lasers)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  72.15.Lh (Relaxation times and mean free paths)  

Project supported by the National Natural Science Foundation of China (Grant Nos. U1930116, U1832153, and 11574319) and the Fund from the Center of Science and Technology of Hefei Academy of Sciences, China (Grant No. 2016FXZY002).

Corresponding Authors:  Wen Xu     E-mail:

Cite this article: 

Chao Wang(王超), Wen Xu(徐文), Hong-Ying Mei(梅红樱), Hua Qin(秦华), Xin-Nian Zhao(赵昕念), Hua Wen(温华), Chao Zhang(张超), Lan Ding(丁岚), Yong Xu(徐勇), Peng Li(李鹏), Dai Wu(吴岱), Ming Li(黎明) Picosecond terahertz pump-probe realized from Chinese terahertz free-electron laser 2020 Chin. Phys. B 29 084101

[1] Lee Y S 2009 Principles of Terahertz Science and Technology (Springer) p. 58
[2] Rulliére C 2005 Femtosecond laser pulses (Springer Science + Business Media) p. 325
[3] Morimoto T, Miyamoto T and Okamoto H 2017 Crystals 7 132
[4] Nakajima M, Takubo N, Hiroi Z, Ueda Y and Suemoto T 2008 Appl. Phys. Lett. 92 011907
[5] Zielbauer J and Wegener M 1996 Appl. Phys. Lett. 68 1223
[6] Lee W J, Cho D H, Wi J H, Han W S, Chung Y D, Park J, Bae J M and Cho M H 2015 J. Phys. Chem. C 119 20231
[7] Tsubouchi M, Nagai M and Ohshima Y 2012 Opt. Lett. 37 3528
[8] Xu W and Zhang C 1997 Phys. Rev. B 55 5259
[9] Zhou J H, Hu Y Z, Jiang T, Ouyang H, Li H, Sui Y H, Hao H, You J, Zheng X, Xu Z J and Cheng X A 2019 Photon. Res. 7 994
[10] Lloyd-Hughes J and Jeon T I 2012 J. Infrared Millim. Terahertz Waves 33 871
[11] Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A and Averitt R D 2012 Nature 487 345
[12] Hebling J, Hoffmann M C, Hwang H Y, Yeh K L and Nelson K A 2010 Phys. Rev. B 81 035201
[13] Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X and Ozaki T 2016 J. Opt. 18 093004
[14] Knyazev B A, Kulipanov G N and Vinokurov N A 2010 Meas. Sci. Technol. 21 054017
[15] Shu X J, Dou Y H, Yang X F, Li M, Xu Y and Xu Z 2018 Proceedings of 9 th International Particle Accelerator Conference, April 29-May 4, 2018, Vancouver, BC Canada, p. 3228
[16] Hao Y, Yang L A and Zhang J C 2008 Terahertz Sci. Technol. 1 51
[17] Choporova Y Y, Gerasimov V V, Knyazev B A, Sergeev S M, Shevchenko O A, Zhukavin R K, Abrosimov N V, Kovalevsky K A, Ovchar V K, Hübers H W, Kulipanov G N, Shastin V N, Schneider H and Vinokurov N A 2016 Phys. Procedia 84 152
[18] Schasfoort R B M and Tudos A J 2008 Handbook of surface plasmon resonance (Royal Society of Chemistry) pp. 15-29
[19] Dong P T and Cheng J X 2017 Spectroscopy 32 24
[20] Fang T, Konar A, Xing H L and Jena D 2008 Phys. Rev. B 78 205403
[21] Kash K, Wolff P A and Bonner W A 1983 Appl. Phys. Lett. 42 173
[22] Li H P, Kam C H, Lam Y L, Jie Y X, Ji W, Wee A T S and Huan C H A 2001 Appl. Phys. B 72 611
[1] Electric field in two-dimensional complex plasma crystal: Simulated lattices
Behnam Bahadory. Chin. Phys. B, 2018, 27(2): 025202.
[2] Plural interactions of space charge wave harmonics during the development of two-stream instability
Victor Kulish, Alexander Lysenko, Michael Rombovsky, Vitaliy Koval, Iurii Volk. Chin. Phys. B, 2015, 24(9): 095201.
[3] Effects of self-fields on electron trajectory and gain in planar wiggler free-electron lasers with two-stream and ion-channel guiding
S. Saviz, M. Karimi. Chin. Phys. B, 2014, 23(3): 034103.
[4] Effect of normalized plasma frequency on electron phase-space orbits in a free-electron laser
Ji Yu-Pin (吉驭嫔), Wang Shi-Jian (王时建), Xu Jing-Yue (徐竟跃), Xu Yong-Gen (徐勇根), Liu Xiao-Xu (刘晓旭), Lu Hong (卢宏), Huang Xiao-Li (黄小莉), Zhang Shi-Chang (张世昌). Chin. Phys. B, 2014, 23(2): 024103.
[5] Dispersion relation and growth rate for a corrugated channel free-electron laser with a helical wiggler pump
A. Hasanbeigi, H. Mehdiank. Chin. Phys. B, 2013, 22(7): 075205.
[6] Three-dimensional simulation of long-wavelength free-electron lasers with helical wiggler and ion-channel guiding
F. Jafari Bahman, B. Maraghechi. Chin. Phys. B, 2013, 22(7): 074102.
[7] Efficiency enhancement of a two-beam free-electron laser using a nonlinearly tapered wiggler
Maryam Zahedian, B. Maraghechi, and M.H. Rouhani . Chin. Phys. B, 2012, 21(3): 034101.
No Suggested Reading articles found!