Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030302    DOI: 10.1088/1674-1056/22/3/030302
GENERAL Prev   Next  

Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method

E. Maghsoodia, H. Hassanabadia, S. Zarrinkamarb
a Physics Department, Shahrood University of Technology, Shahrood, Iran;
b Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran
Abstract  Exact analytical solutions of the Dirac equation are reported for the Pöschl–Teller double-ring-shaped Coulomb potential. The radial, polar, and azimuthal parts of the Dirac equation are solved by using the Nikiforov–Uvarov method, and exact bound state energy eigenvalues and the corresponding two-component spinor wavefunctions are reported.
Keywords:  Dirac equation      Pöschl–Teller double-ring-shaped Coulomb potential      Nikiforov–Uvarov method  
Received:  04 August 2012      Revised:  16 August 2012      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  
  03.65.Fd (Algebraic methods)  
Corresponding Authors:  E. Maghsoodi     E-mail:  e.maghsoodi184@gmail.com

Cite this article: 

E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method 2013 Chin. Phys. B 22 030302

[1] Bagchi B and Ganguly A 2003 J. Phys. A: Math. Gen. 36 161
[2] Hasan Y and Tomak M 2005 Phys. Rev. B 72 115340
[3] Hassanabadi H, Yazarloo B H, Zarrinkamar S and Rajabi A A 2011 Phys. Rev. C 84 064003
[4] Hassanabadi S, Rajabi A A and Zarrinkamar S 2012 Mod. Phys. Lett. A 27 1250057
[5] Roy U, Ghosh S, Panigrahi P K and Vitali D 2009 Phys. Rev. A 80 052115
[6] Yildirim H and Tomak M 2006 J. Appl. Phys. 99 093103
[7] Xie W 2006 Com. Theor. Phys. 46 1101
[8] Lu F L and Chen C Y 2010 Chin. Phys. B 19 100309
[9] Zhang X C, Liu Q W, Jia C S and Wang L Z 2005 Phys. Lett. A 340 59
[10] Jia C S, Guo P, Diao Y F, Yi L Z and Xie X J 2007 Eur. Phys. J. A 34 41
[11] Wei G F and Dong S H 2009 Euro. Phys. Lett. 87 40004
[12] Xu Y, He S and Jia C S 2008 J. Phys. A: Math. Theor. 41 255302
[13] Lisboa R, Malheiro M, de Castro A S, Alberto P and Fiolhais M 2004 Phys. Rev. C 69 4319
[14] De Castro A S, Alberto P, Lisboa R and Malheiro M 2006 Phys. Rev. C 73 054309
[15] Oyewumi K J, Akinpelu F O and Agboola A D 2008 Int. J. Theor. Phys. 47 1039
[16] Qiang W C and Dong S H 2007 Phys. Lett. A 368 13
[17] Greiner W 1987 Relativistic Quantum Mechanics, Wave Equations (Berlin: Springer)
[18] Dong S H 2007 Factorization Method in Quantum Mechanics (Netherlands: Springer)
[19] Dong S H, Gu X Y, Ma Z Q and Dong S 2002 Int. J. Mod. Phys. E 11 483
[20] Dong S H, Sun G H and Popov D 2003 J. Math. Phys. 44 4467
[21] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
[22] Agboola D 2011 Pram. J. Phys. 76 6
[23] Wei G and Dong S H 2009 Phys. Lett. A 373 2428
[24] Dong S H 2011 Wave Eqautions in Higher Dimensions (Berlin: Springer)
[25] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[26] Hassanabadi H, Maghsoodi E, Zarrinkamar S and Rahimov H 2011 Modern Phys. Lett. A 26 2703
[27] Berkdemir C, Berkdemir A and Han J 2006 Chem. Phys. Lett. 417 326
[28] E\ugifes H and Sever R 2005 Phys. Lett. A 344 117
[29] Hassanabadi H, Maghsoodi E, Zarrinkamar S and Rahimov H 2012 J. Math. Phys. 53 022104
[30] Huang B W 2003 High Energy Phys. Nucl. Phys. 27 770 (in Chinese)
[31] Yasuk F and Durmus A 2008 Phys. Scr. 77 015005
[32] Victoria Carpio-Bernido M, Bernido Christopher C 1989 Phys. Lett. A 137 1
[33] Dong S H, Sun G H and Lozada-Cassou M 2004 Phys. Lett. A 328 299
[34] Chen C Y and Dong S H 2005 Phys. Lett. A 335 374
[35] Zhang M C, Sun G H and Dong S H 2010 Phys. Lett. A 374 704
[36] Arda A and Sever R 2012 J. Math. Chem. 50 1484
[37] Dong S H, Chen C Y and Lozada-Cassou M 2005 International Journal of Quantum Chemistry. 105 453
[38] Dong S H and Lozada-Cassou M 2006 Phys. Scr. 74 285
[39] Sun G H and Dong S H 2010 Mod. Phys. Lett. A 25 2849
[40] Bakkeshizadeh S and Vahidi V 2012 Adv. Studies Theor. Phys. 6 733
[41] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Birkhauser: Bassel)
[42] Miranda M G, Sun G H and Dong S H 2010 Int. J. Mod. Phys. E 19 123
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[3] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[4] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[5] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[6] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[7] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[8] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[9] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[10] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[11] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[12] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[13] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[14] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
[15] The spin-one Duffin–Kemmer–Petiau equation in the presence of pseudo-harmonic oscillatory ring-shaped potential
H. Hassanabadi, M. Kamali. Chin. Phys. B, 2013, 22(10): 100304.
No Suggested Reading articles found!