CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Annealing effect on magnetic anisotropy in ultrathin (Ga,Mn)As |
Li Yan-Yong (李炎勇), Wang Hua-Feng (汪华锋), Cao Yu-Fei (曹玉飞), Wang Kai-You (王开友) |
The State Key Laboratory of Superlattices and Microstructure, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract We investigated the effect of low temperature annealing on magnetic anisotropy in 7-nm ultrathin Ga0.94Mn0.06As devices by measuring the angle-dependent planar Hall resistance (PHR). Obvious hysteresis loops were observed during the magnetization reversal through the clockwise and counterclockwise rotations under low magnetic fields (below 1000 Gs, 1 Gs=10-4 T), which can be explained by competition between Zeeman energy and magnetic anisotropic energy. It is found that the uniaxial anisotropy is dominant in the whole measured ferromagnetic range for both the as-grown ultrathin Ga0.94Mn0.06As and the annealed one. The cubic anisotropy changes more than the uniaxial anisotropy in the measured temperature ranges after annealing. This gives a useful way to tune the magnetic anisotropy of ultrathin (Ga,Mn)As devices.
|
Received: 18 September 2012
Revised: 17 October 2012
Accepted manuscript online:
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.30.Hx
|
(Magnetic impurity interactions)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB922200); the National Natural Science Foundation of China (Grant No. 11174272); and the Engineering and Physical Sciences Research Council-National Natural Science Foundation Joint (Grant Nos. 10911130232/A0402). |
Corresponding Authors:
Wang Kai-You
E-mail: kywang@semi.ac.cn
|
Cite this article:
Li Yan-Yong (李炎勇), Wang Hua-Feng (汪华锋), Cao Yu-Fei (曹玉飞), Wang Kai-You (王开友) Annealing effect on magnetic anisotropy in ultrathin (Ga,Mn)As 2013 Chin. Phys. B 22 027504
|
[1] |
Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S and Iye Y 1996 Appl. Phys. Lett. 69 363
|
[2] |
Matsukura F, Sawicki M, Dietl T, Chiba D and Ohno H 2004 Physica E: Low-dimensional Systems and Nanostructures 21 1032
|
[3] |
Chiba D, Sawicki M, Nishitani Y, Nakatani Y, Matsukura F and Ohno H 2008 Nature 455 515
|
[4] |
Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P and von Molnaár S 2011 Nano Lett. 11 2584
|
[5] |
Myers E B, Ralph D C, Katine J A, Louie R N and Buhrman R A 1999 Science 285 867
|
[6] |
Lee S, Yoo T, Lee H, Khym S, Liu X and K. Furdyna J 2011 Jpn. J. Appl. Phys. 50 04DM02
|
[7] |
Kim J, Shin D Y, Lee S, Liu X and Furdyna J K 2008 Phys. Rev. B 78 075309
|
[8] |
Kim J, Shin D Y, Yoo T, Kim H, Lee S, Liu X and Furdyna J K 2008 J. Appl. Phys. 103 07D101
|
[9] |
Welp U, Vlasko-Vlasov V K, Liu X, Furdyna J K and Wojtowicz T 2003 Phys. Rev. Lett. 90 167206
|
[10] |
Wang K Y, Sawicki M, Edmonds K W, Campion R P, Maat S, Foxon C T, Gallagher B L and Dietl T 2005 Phys. Rev. Lett. 95 217204
|
[11] |
Rushforth A W, Výborný K, King C S, Edmonds K W, Campion R P, Foxon C T, Wunderlich J, Irvine A C, Vašek P, Novák V, Olejník K, Sinova J, Jungwirth T and Gallagher B L 2007 Phys. Rev. Lett. 99 147207
|
[12] |
Stanciu V, Wilhelmsson O, Bexell U, Adell M, Sadowski J, Kanski J, Warnicke P and Svedlindh P 2005 Phys. Rev. B 72 125324
|
[13] |
Edmonds KW, Boguslawski P, Wang K Y, Campion R P, Novikov S N, Farley N R S, Gallagher B L, Foxon C T, Sawicki M, Dietl T, Buongiorno Nardelli M and Bernholc J 2004 Phys. Rev. Lett. 92 037201
|
[14] |
Deng J J, Zhao J H, Jiang C P, Zhang Y, Niu Z C, Yang F H, Wu X G and Zheng H Z 2005 Chin. Phys. Lett. 22 466
|
[15] |
Kim J, Lee H, Yoo T, Lee S, Liu X and Furdyna J K 2011 Phys. Rev. B 84 184407
|
[16] |
Novák V, Olejník K, Wunderlich J, Cukr M, Výborný K, Rushforth A W, Edmonds K W, Campion R P, Gallagher B L, Sinova J and Jungwirth T 2008 Phys. Rev. Lett. 101 077201
|
[17] |
Yu K M, Walukiewicz W, Wojtowicz T, Kuryliszyn I, Liu X, Sasaki Y and Furdyna J K 2002 Phys. Rev. B 65 201303
|
[18] |
Chien C L and Westgate C R 1980 The Hall Effect and Its Applications (California: Plenum Press)
|
[19] |
Dietl T, Matsukura F, Ohno H, Cibert J and Ferrand D 2003 Hall Effect and Magnetoresistance in P-Type Ferromagnetic Semiconductors: Recent Trends in Theory of Physical Phenomena in High Magnetic Fields (Netherlands: Springer) p. 197
|
[20] |
Jungwirth T, Niu Q and MacDonald A H 2002 Phys. Rev. Lett. 88 207208
|
[21] |
Wang K Y, Edmonds K W, Campion R P, Gallagher B L, Farley N R S, Foxon C T, Sawicki M, Boguslawski P and Dietl T 2004 J. Appl. Phys. 95 6512
|
[22] |
Jungwirth T, Wang K Y, Mašek J, Edmonds K W, König J, Sinova J, Polini M, Goncharuk N A, MacDonald A H, Sawicki M, Rushforth A W, Campion R P, Zhao L X, Foxon C T and Gallagher B L 2005 Phys. Rev. B 72 165204
|
[23] |
Tang H X, Kawakami R K, Awschalom D D and Roukes M L 2003 Phys. Rev. Lett. 90 107201
|
[24] |
Kim J, Lee S, Lee S, Liu X and Furdyna J K 2010 Solid State Commun. 150 27
|
[25] |
Limmer W, Daeubler J, Dreher L, Glunk M, Schoch W, Schwaiger S and Sauer R 2008 Phys. Rev. B 77 205210
|
[26] |
Kim J, Yoo T, Chung S, Lee S, Liu X and Furdyna J K 2009 J. Appl. Phys. 105 07C501
|
[27] |
Lee S, Chung J H, Liu X, Furdyna J K and Kirby B J 2009 Materials Today 12 14
|
[28] |
Olejník K, Owen M H S, Novák V, Mašek J, Irvine A C, Wunderlich J and Jungwirth T 2008 Phys. Rev. B 78 054403
|
[29] |
Owen M H S, Wunderlich J, Novák V, Olejník K, Zemen J, Vyborny K, Ogawa S, Irvine A C, Ferguson A J, Sirringhaus H and Jungwirth T 2009 New J. Phys. 11 023008
|
[30] |
Endo M, Chiba D, Shimotani H, Matsukura F, Iwasa Y and Ohno H 2010 Appl. Phys. Lett. 96 022515
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|