Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 027504    DOI: 10.1088/1674-1056/22/2/027504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Annealing effect on magnetic anisotropy in ultrathin (Ga,Mn)As

Li Yan-Yong (李炎勇), Wang Hua-Feng (汪华锋), Cao Yu-Fei (曹玉飞), Wang Kai-You (王开友)
The State Key Laboratory of Superlattices and Microstructure, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We investigated the effect of low temperature annealing on magnetic anisotropy in 7-nm ultrathin Ga0.94Mn0.06As devices by measuring the angle-dependent planar Hall resistance (PHR). Obvious hysteresis loops were observed during the magnetization reversal through the clockwise and counterclockwise rotations under low magnetic fields (below 1000 Gs, 1 Gs=10-4 T), which can be explained by competition between Zeeman energy and magnetic anisotropic energy. It is found that the uniaxial anisotropy is dominant in the whole measured ferromagnetic range for both the as-grown ultrathin Ga0.94Mn0.06As and the annealed one. The cubic anisotropy changes more than the uniaxial anisotropy in the measured temperature ranges after annealing. This gives a useful way to tune the magnetic anisotropy of ultrathin (Ga,Mn)As devices.
Keywords:  magnetic anisotropy      planar Hall resistance      ultrathin (Ga,Mn)As  
Received:  18 September 2012      Revised:  17 October 2012      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  75.30.Gw (Magnetic anisotropy)  
  75.30.Hx (Magnetic impurity interactions)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB922200); the National Natural Science Foundation of China (Grant No. 11174272); and the Engineering and Physical Sciences Research Council-National Natural Science Foundation Joint (Grant Nos. 10911130232/A0402).
Corresponding Authors:  Wang Kai-You     E-mail:  kywang@semi.ac.cn

Cite this article: 

Li Yan-Yong (李炎勇), Wang Hua-Feng (汪华锋), Cao Yu-Fei (曹玉飞), Wang Kai-You (王开友) Annealing effect on magnetic anisotropy in ultrathin (Ga,Mn)As 2013 Chin. Phys. B 22 027504

[1] Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S and Iye Y 1996 Appl. Phys. Lett. 69 363
[2] Matsukura F, Sawicki M, Dietl T, Chiba D and Ohno H 2004 Physica E: Low-dimensional Systems and Nanostructures 21 1032
[3] Chiba D, Sawicki M, Nishitani Y, Nakatani Y, Matsukura F and Ohno H 2008 Nature 455 515
[4] Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P and von Molnaár S 2011 Nano Lett. 11 2584
[5] Myers E B, Ralph D C, Katine J A, Louie R N and Buhrman R A 1999 Science 285 867
[6] Lee S, Yoo T, Lee H, Khym S, Liu X and K. Furdyna J 2011 Jpn. J. Appl. Phys. 50 04DM02
[7] Kim J, Shin D Y, Lee S, Liu X and Furdyna J K 2008 Phys. Rev. B 78 075309
[8] Kim J, Shin D Y, Yoo T, Kim H, Lee S, Liu X and Furdyna J K 2008 J. Appl. Phys. 103 07D101
[9] Welp U, Vlasko-Vlasov V K, Liu X, Furdyna J K and Wojtowicz T 2003 Phys. Rev. Lett. 90 167206
[10] Wang K Y, Sawicki M, Edmonds K W, Campion R P, Maat S, Foxon C T, Gallagher B L and Dietl T 2005 Phys. Rev. Lett. 95 217204
[11] Rushforth A W, Výborný K, King C S, Edmonds K W, Campion R P, Foxon C T, Wunderlich J, Irvine A C, Vašek P, Novák V, Olejník K, Sinova J, Jungwirth T and Gallagher B L 2007 Phys. Rev. Lett. 99 147207
[12] Stanciu V, Wilhelmsson O, Bexell U, Adell M, Sadowski J, Kanski J, Warnicke P and Svedlindh P 2005 Phys. Rev. B 72 125324
[13] Edmonds KW, Boguslawski P, Wang K Y, Campion R P, Novikov S N, Farley N R S, Gallagher B L, Foxon C T, Sawicki M, Dietl T, Buongiorno Nardelli M and Bernholc J 2004 Phys. Rev. Lett. 92 037201
[14] Deng J J, Zhao J H, Jiang C P, Zhang Y, Niu Z C, Yang F H, Wu X G and Zheng H Z 2005 Chin. Phys. Lett. 22 466
[15] Kim J, Lee H, Yoo T, Lee S, Liu X and Furdyna J K 2011 Phys. Rev. B 84 184407
[16] Novák V, Olejník K, Wunderlich J, Cukr M, Výborný K, Rushforth A W, Edmonds K W, Campion R P, Gallagher B L, Sinova J and Jungwirth T 2008 Phys. Rev. Lett. 101 077201
[17] Yu K M, Walukiewicz W, Wojtowicz T, Kuryliszyn I, Liu X, Sasaki Y and Furdyna J K 2002 Phys. Rev. B 65 201303
[18] Chien C L and Westgate C R 1980 The Hall Effect and Its Applications (California: Plenum Press)
[19] Dietl T, Matsukura F, Ohno H, Cibert J and Ferrand D 2003 Hall Effect and Magnetoresistance in P-Type Ferromagnetic Semiconductors: Recent Trends in Theory of Physical Phenomena in High Magnetic Fields (Netherlands: Springer) p. 197
[20] Jungwirth T, Niu Q and MacDonald A H 2002 Phys. Rev. Lett. 88 207208
[21] Wang K Y, Edmonds K W, Campion R P, Gallagher B L, Farley N R S, Foxon C T, Sawicki M, Boguslawski P and Dietl T 2004 J. Appl. Phys. 95 6512
[22] Jungwirth T, Wang K Y, Mašek J, Edmonds K W, König J, Sinova J, Polini M, Goncharuk N A, MacDonald A H, Sawicki M, Rushforth A W, Campion R P, Zhao L X, Foxon C T and Gallagher B L 2005 Phys. Rev. B 72 165204
[23] Tang H X, Kawakami R K, Awschalom D D and Roukes M L 2003 Phys. Rev. Lett. 90 107201
[24] Kim J, Lee S, Lee S, Liu X and Furdyna J K 2010 Solid State Commun. 150 27
[25] Limmer W, Daeubler J, Dreher L, Glunk M, Schoch W, Schwaiger S and Sauer R 2008 Phys. Rev. B 77 205210
[26] Kim J, Yoo T, Chung S, Lee S, Liu X and Furdyna J K 2009 J. Appl. Phys. 105 07C501
[27] Lee S, Chung J H, Liu X, Furdyna J K and Kirby B J 2009 Materials Today 12 14
[28] Olejník K, Owen M H S, Novák V, Mašek J, Irvine A C, Wunderlich J and Jungwirth T 2008 Phys. Rev. B 78 054403
[29] Owen M H S, Wunderlich J, Novák V, Olejník K, Zemen J, Vyborny K, Ogawa S, Irvine A C, Ferguson A J, Sirringhaus H and Jungwirth T 2009 New J. Phys. 11 023008
[30] Endo M, Chiba D, Shimotani H, Matsukura F, Iwasa Y and Ohno H 2010 Appl. Phys. Lett. 96 022515
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[5] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[6] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[7] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[8] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[9] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[10] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[11] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[12] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[13] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[14] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[15] Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures
Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高). Chin. Phys. B, 2021, 30(12): 127502.
No Suggested Reading articles found!