Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 129201    DOI: 10.1088/1674-1056/22/12/129201
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Ground-based remote sensing of atmospheric total column CO2 and CH4 by direct sunlight in Hefei

Cheng Si-Yang (程巳阳), Xu Liang (徐亮), Gao Min-Guang (高闽光), Li Sheng (李胜), Jin Ling (金岭), Tong Jing-Jing (童晶晶), Wei Xiu-Li (魏秀丽), Liu Jian-Guo (刘建国), Liu Wen-Qing (刘文清)
Key Laboratory of Environment Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Fourier transform spectrometry has played an important role in the three-dimensional greenhouse gas monitoring as the focus of attention on global warming in the past few years. In this paper, a ground-based low-resolution remote sensing system measuring the total columns of CO2 and CH4 is developed, which tracks the sun automatically and records the spectra in real-time and has the advantages of portability and low cost. A spectral inversion algorithm based on nonlinear least squares spectral fitting procedure for determining the column concentrations of these species is described. Atmospheric transmittance spectra are computed line-by-line in the forward model and observed on-line by direct solar radiation. Also, the wavelength shifts are introduced and the influence of spectral resolution is discussed. Based on this system and algorithm, the vertical columns of O2, CO2, and CH4 are calculated from total atmospheric observation transmittance spectra in Hefei, and the results show that the column averaged dry-air mole fractions of CO2 and CH4 are measured with accuracies of 3.7% and 5%, respectively. Finally, the H2O columns are compared with the results observed by solar radiometer at the same site and the calculated correlation coefficient is 0.92, which proves that this system is suitable for field campaigns and used to monitor the local greenhouse gas sources under the condition of higher accuracy, indirectly.
Keywords:  carbon dioxide      methane      ground-based remote sensing      solar absorption spectroscopy  
Received:  20 March 2013      Revised:  15 May 2013      Accepted manuscript online: 
PACS:  92.30.Np (Greenhouse gases)  
  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
  42.68.Ca (Spectral absorption by atmospheric gases)  
Fund: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAJ24B02) and the National Natural Science Foundation of China (Grant Nos. 40905011 and 41105022).
Corresponding Authors:  Xu Liang     E-mail:  xuliang@aiofm.ac.cn

Cite this article: 

Cheng Si-Yang (程巳阳), Xu Liang (徐亮), Gao Min-Guang (高闽光), Li Sheng (李胜), Jin Ling (金岭), Tong Jing-Jing (童晶晶), Wei Xiu-Li (魏秀丽), Liu Jian-Guo (刘建国), Liu Wen-Qing (刘文清) Ground-based remote sensing of atmospheric total column CO2 and CH4 by direct sunlight in Hefei 2013 Chin. Phys. B 22 129201

[1] Wunch D, Toon G C, Blavier J F L, Washenfelder R A, Notholt J, Connor B J, Griffith D W T, Sherlock V and Wennberg P O 2011 Phil. Trans. R. Soc. A 369 2087
[2] Thompson D R, Benner D C, Brown L R, Crisp D, Devi V M, Jiang Y B, Natraj V, Oyafuso F, Sung K, Wunch D, Castano R and Miller C E 2012 J. Quant. Spectrosc. Radiat. Transfer 113 2265
[3] Reuter M, Bovensmann H, Buchwitz M, Burrows J P, Connor B J, Deutscher N M, Griffith D W T, Heymann J, Keppel-Aleks G, Messerschmidt J, Notholt J, Petri C, Robinson J, Schneising O, Sherlock V, Velazco V, Warneke T, Wennberg P O and Wunch D 2011 J. Geophys. Res. 116 D04301
[4] Dils B, Maziere M D, Muller J F, Blumenstock T, Buchwitz M, Beek R, Demoulin P, Duchatelet P, Fast H, Frankenberg C, Gloudemans A, Grifith D, Jones N, Kerzenmacher T, Kramer I, Mahieu E, Mellqvist J, Mittermeier R L, Notholt J, Rinsland C P, Schrijver H, Smale D, Strandberg A, Straume A G, Stremme W, Strong K, Sussmann R, Taylor J, Broek M, Velazco V, Wagner T, Warneke T, Wiacek A and Wood S 2006 Atmos. Chem. Phys. 6 1953
[5] Geibel M C, Messerschmidt J, Gerbig C, Blumenstock T, Chen H, Hase F, Kolle O, Lavric J V, Notholt J, Palm M, Rettinger M, Schmidt M, Sussmann R, Warneke T and Feist D G 2012 Atmos. Chem. Phys. 12 8763
[6] Wunch D, Toon G C, Wennberg P O, Wofsy S C, Stephens B B, Fischer M L, Uchino O, Abshire J B, Bernath P, Biraud S C, Blavier J F L, Boone C, Bowman K P, Browell E V, Campos T, Connor B J, Daube B C, Deutscher N M, Diao M, Elkins J W, Gerbig C, Gottlieb E, Griffith D W T, Hurst D F, Jimenez R, Aleks G K, Kort E A, Macatangay R, Machida T, Matsueda H, Moore F, Morino I, Park S, Robinson J, Roehl C M, Sawa Y, Sherlock V, Sweeney C, Tanaka T and Zondlo M A 2010 Atmos. Meas. Tech. 3 1351
[7] Oshchepkov S, Bril A, Yokota T, Yoshida Y, Blumenstock T, Deutscher N M, Dohe S, Macatangay R, Morino I, Notholt J, Rettinger M, Petri C, Schneider M, Sussman R, Uchino O, Velazco V, Wunch D and Belikov D 2013 Appl. Opt. 52 1339
[8] Cogan A J, Boesch H, Parker R J, Feng L, Palmer P I, Blavier J F L, Deutscher N M, Macatangay R, Notholt J, Roehl C, Warneke T and Wunch D 2012 J. Geophys. Res. 117 D21301
[9] Petri C, Warneke T, Jones N, Ridder T, Messerschmidt J, Weinzierl T, Geibel M and Notholt J 2012 Atmos. Meas. Tech. Discuss. 5 245
[10] Fu D J, Sung K, Boone C D, Walker K A and Bernath P F 2008 J. Quant. Spectrosc. Radiat. Transfer 109 2219
[11] Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L, Wei X L, Jin L, Wang Y P and Chen J 2010 Acta Phys. Sin. 59 5397 (in Chinese)
[12] Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L and Wei X L 2008 Chin. Phys. B 17 4184
[13] Wang Y, Xie P H, Li A, Zeng Y, Xu J and Si F Q 2012 Acta Phys. Sin. 61 114209 (in Chinese)
[14] Xu J, Xie P H, Si F Q, Li A and Liu W Q 2012 Acta Phys. Sin. 61 024204 (in Chinese)
[15] Yang Z H, Toon G C, Margolis J S and Wennberg P O 2002 Geophys. Res. Lett. 29 1339
[16] Zou M M, Fang Y H, Xiong W and Shi H L 2009 Acta Opt. Sin. 29 1701 (in Chinese)
[17] Guo R P, Zhan J and Rao R Z 2006 Chin. J. Quan. Elec. 23 736 (in Chinese)
[18] Liou K N 2002 An Introduction to Atmospheric Radiation, 2nd edn. (California: Academic Press Inc.) p. 57
[19] Dufour E, Breon F M and Peylin P 2004 J. Geophys. Res. 109 D09304
[20] Mao J P and Kawa S R 2004 Appl. Opt. 43 914
[21] Heymann J, Schneising O, Reuter M, Buchwitz M, Rozanov V V, Velazco V A, Bovensmann H and Burrows J P 2012 Atmos. Meas. Tech. 5 1935
[22] Gisi M, Hase F, Dohe S, Blumenstock T, Simon A and Keens A 2012 Atmos. Meas. Tech. 5 2969
[23] Hase F 2012 Atmos. Meas. Tech. 5 603
[24] Liu Y, Wang X F, Guo M and Tani H 2012 Int. J. Remote Sens. 33 3004
[1] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[2] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[3] Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst
Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤). Chin. Phys. B, 2019, 28(4): 048101.
[4] Temperature dependence of line parameters of 12C16O2 near 2.004 μm studied by tunable diode laser spectroscopy
Hongliang Ma(马宏亮), Mingguo Sun(孙明国), Shenlong Zha(査申龙), Qiang Liu(刘强), Zhensong Cao(曹振松), Yinbo Huang(黄印博), Zhu Zhu(朱柱), Ruizhong Rao(饶瑞中). Chin. Phys. B, 2018, 27(2): 023301.
[5] Structural deformation of nitro group of nitromethane molecule in liquid phase in an intense femtosecond laser field
Chang Wang(王畅), Hong-lin Wu(吴红琳), Yun-fei Song(宋云飞), Yan-qiang Yang(杨延强). Chin. Phys. B, 2017, 26(9): 094208.
[6] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[7] Graphene/Mo2C heterostructure directly grown by chemical vapor deposition
Rongxuan Deng(邓荣轩), Haoran Zhang(张浩然), Yanhui Zhang(张燕辉), Zhiying Chen(陈志蓥), Yanping Sui(隋妍萍), Xiaoming Ge(葛晓明), Yijian Liang(梁逸俭), Shike Hu(胡诗珂), Guanghui Yu(于广辉), Da Jiang(姜达). Chin. Phys. B, 2017, 26(6): 067901.
[8] Coalbed methane adsorption and desorption characteristics related to coal particle size
Yan-Yan Feng(冯艳艳), Wen Yang (杨文), Wei Chu(储伟). Chin. Phys. B, 2016, 25(6): 068102.
[9] Ellipticity-dependent ionization/dissociation of carbon dioxide in strong laser fields
Zhang Jun-Feng (张军峰), Ma Ri (马日), Zuo Wan-Long (左万龙), Lv Hang (吕航), Huang Hong-Wei (黄红卫), Xu Hai-Feng (徐海峰), Jin Ming-Xing (金明星), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(3): 033302.
[10] Hugoniot curve calculation of nitromethane decomposition mixtures: A reactive force field molecular dynamics approach
Guo Feng (郭峰), Zhang Hong (张红), Hu Hai-Quan (胡海泉), Cheng Xin-Lu (程新路), Zhang Li-Yan (张利燕). Chin. Phys. B, 2015, 24(11): 118201.
[11] Synthesis of multi-walled carbon nanotubes using CoMnMgO catalysts through catalytic chemical vapor deposition
Yang Wen (杨文), Feng Yan-Yan (冯艳艳), Jiang Cheng-Fa (江成发), Chu Wei (储伟). Chin. Phys. B, 2014, 23(12): 128201.
[12] K2S-activated carbons developed from coal and their methane adsorption behaviors
Feng Yan-Yan (冯艳艳), Yang Wen (杨文), Chu Wei (储伟). Chin. Phys. B, 2014, 23(10): 108201.
[13] Computer study of the spectral characteristics of the disperse water–methane system
A. Y. Galashev. Chin. Phys. B, 2013, 22(12): 123602.
[14] Methane adsorption on graphite(0001) films: a first-principles study
He Man-Chao (何满潮), Zhao Jian (赵健). Chin. Phys. B, 2013, 22(1): 016802.
[15] Low temperature laser absorption spectra of methane in the near-infrared at 1.65 μm for lower state energy determination
Gao Wei(高伟), Chen Wei-Dong(陈卫东), Zhang Wei-Jun(张为俊), Yuan Yi-Qian(袁怿谦), and Gao Xiao-Ming(高晓明) . Chin. Phys. B, 2012, 21(1): 014211.
No Suggested Reading articles found!