Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 014211    DOI: 10.1088/1674-1056/21/1/014211
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Low temperature laser absorption spectra of methane in the near-infrared at 1.65 μm for lower state energy determination

Gao Wei(高伟)a)b), Chen Wei-Dong(陈卫东)c), Zhang Wei-Jun(张为俊)a)b), Yuan Yi-Qian(袁怿谦)a)b), and Gao Xiao-Ming(高晓明)a)b)†
a Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Sciences, Hefei 230031, Chinab Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; b Laboratoire de Physicochimie de l'Atmosphère, Université du Littoral Côte d'Opale, 189A, Av. Maurice Schumann, 59140 Dunkerque, France
Abstract  Direct absorption spectra of the 2v3 band of methane (CH4) from 6038 to 6050 cm-1 were studied at different low temperatures using a newly developed cryogenic cell in combination with a distributed feedback (DFB) diode laser. The cryogenic cell can operate at any stabilized temperature ranging from room temperature down to 100 K with temperature fluctuation less than ±1 K within 1 hour. In the present work, the CH4 spectra in the range of 6038-6050 cm-1 were recorded at 296, 266, 248, 223, 198, and 176 K. The lower state energy E″ and the rotational assignment of the angular momentum J were determined by a “2-low-temperature spectra method” using the spectra recorded at 198 and 176 K. The results were compared with the data from the GOSAT and the recently reported results from Campargue and co-workers using two spectra measured at room temperature and 81 K. We demonstrated that the use of a 2-low-temperature spectra method permits one to complete the E″ and J values missed in the previous studies.
Keywords:  methane      laser absorption spectroscopy      cryogenic cell      low temperature absorption spectrum  
Received:  11 July 2011      Revised:  06 September 2011      Accepted manuscript online: 
PACS:  42.68.Ca (Spectral absorption by atmospheric gases)  
  25.20.Dc (Photon absorption and scattering)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41175036).

Cite this article: 

Gao Wei(高伟), Chen Wei-Dong(陈卫东), Zhang Wei-Jun(张为俊), Yuan Yi-Qian(袁怿谦), and Gao Xiao-Ming(高晓明) Low temperature laser absorption spectra of methane in the near-infrared at 1.65 μm for lower state energy determination 2012 Chin. Phys. B 21 014211

[1] Müller G 2008 A Contribution to the Implementation of the WMO Strategic Plan: 2008-2011 (WMO TD NO. 1384) GAW report, No. 172. World Meteorological Organization, Geneva, Switzerland
[2] Rothman L S, Gordon I E, Barbe A, et al. 2009 J. Quant. Spectrosc. Radiat. Transfer. 110 533
[3] Boras K, Deboer D, Lin Z and Reilly J P 1993 J. Chem. Phys. 99 1429
[4] Campargue A, Chenevier M and Stoeckel F 1991 Chem. Phys. Lett. 183 153
[5] Campargue A, Permogorov D and Jost R 1995 J. Chem. Phys. 102 5910
[6] Hippler M and Quack M 1999 Chem. Phys. Lett. 314 273
[7] Hippler M and Quack M 2002 J. Chem. Phys. 116 6045
[8] Amrein A, Quack M and Schmitt U 1988 J. Phys. Chem. 92 5455
[9] Albert S, Bauerecker S, Boudon V, Brown L R , Champion J P, Lo"ete M, Nikitin A and Quack M 2009 Chem. Phys. 356 131
[10] Boraas K, Deboer D, Lin Z and Reilly J P 1994 J. Chem. Phys. 100 7916
[11] Li H Y and Liu J S 2010 Acta Phys. Sin. 11 7850 (in Chinese)
[12] Sun J M, Zhao G F, Wang X W, Yang W, Liu Y and Wang Y X 2010 Acta Phys. Sin. 11 7830 (in Chinese)
[13] Margolis J S 1989 Appl. Opt. 27 4038
[14] Kassi S, Gao B, Romanini D and Campargue A 2008 Phys. Chem. Chem. Phys. 10 4410
[15] Gao B, Kassi S and Campargue A 2009 J. Mol. Spectrosc. 253 55
[16] Wang L, Kassi S and Campargue A 2010 J. Quant. Spectrosc. Radiat. Transfer. 111 1130
[17] Votava O, Mavsát M, Pracna P, Kassi S and Campargue A 2010 Phys. Chem. Chem. Phys. 12 3145
[18] Baer D S, Nagali V, Furlong E R, Hanson R K and Newfield M E 1996 AIAA J. 34 489
[19] Nagali V, Chou S I, Baer D S, Hanson R K and Segall J 1996 Appl. Opt. 35 4026
[20] Margolis J S 1990 Appl. Opt. 27 2295
[21] Fox K 1970 J. Quant. Spectrosc. Radiat. Transfer. 10 1335
[22] Lewis E K, Moehnke C J, Navea J G and Manzanares C E 2006 Rev. Sci. Intrum. 77 073107
[23] Gao W, Chen W D, Zhang W J, Yuan Y Q and Gao X M Spectroscopy and Spectral Analysis (accepted)
[1] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[2] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[3] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[4] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[5] Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst
Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤). Chin. Phys. B, 2019, 28(4): 048101.
[6] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
[7] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[8] Structural deformation of nitro group of nitromethane molecule in liquid phase in an intense femtosecond laser field
Chang Wang(王畅), Hong-lin Wu(吴红琳), Yun-fei Song(宋云飞), Yan-qiang Yang(杨延强). Chin. Phys. B, 2017, 26(9): 094208.
[9] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[10] Graphene/Mo2C heterostructure directly grown by chemical vapor deposition
Rongxuan Deng(邓荣轩), Haoran Zhang(张浩然), Yanhui Zhang(张燕辉), Zhiying Chen(陈志蓥), Yanping Sui(隋妍萍), Xiaoming Ge(葛晓明), Yijian Liang(梁逸俭), Shike Hu(胡诗珂), Guanghui Yu(于广辉), Da Jiang(姜达). Chin. Phys. B, 2017, 26(6): 067901.
[11] Coalbed methane adsorption and desorption characteristics related to coal particle size
Yan-Yan Feng(冯艳艳), Wen Yang (杨文), Wei Chu(储伟). Chin. Phys. B, 2016, 25(6): 068102.
[12] Hugoniot curve calculation of nitromethane decomposition mixtures: A reactive force field molecular dynamics approach
Guo Feng (郭峰), Zhang Hong (张红), Hu Hai-Quan (胡海泉), Cheng Xin-Lu (程新路), Zhang Li-Yan (张利燕). Chin. Phys. B, 2015, 24(11): 118201.
[13] Synthesis of multi-walled carbon nanotubes using CoMnMgO catalysts through catalytic chemical vapor deposition
Yang Wen (杨文), Feng Yan-Yan (冯艳艳), Jiang Cheng-Fa (江成发), Chu Wei (储伟). Chin. Phys. B, 2014, 23(12): 128201.
[14] K2S-activated carbons developed from coal and their methane adsorption behaviors
Feng Yan-Yan (冯艳艳), Yang Wen (杨文), Chu Wei (储伟). Chin. Phys. B, 2014, 23(10): 108201.
[15] Dynamic thermal modeling and parameter identification for monolithic laser diode module
Li Jin-Yi (李金义), Du Zhen-Hui (杜振辉), Ma Yi-Wen (马艺闻), Xu Ke-Xin (徐可欣). Chin. Phys. B, 2013, 22(3): 034203.
No Suggested Reading articles found!