Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 108902    DOI: 10.1088/1674-1056/22/10/108902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The effect of moving bottlenecks on a two-lane traffic flow

Fang Yuan (方远), Chen Jian-Zhong (陈建忠), Peng Zhi-Yuan (彭志远)
College of Automation, Northwestern Polytechnical University, Xi’an 710129, China
Abstract  In this paper, we study the effect of moving bottlenecks on traffic flow. The full velocity difference (FVD) model is extended to the traffic flow on a two-lane highway, and new lane changing rule is proposed to reproduce the vehicular lane changing behavior. Using this model, we derive the fundamental current–density diagrams for the traffic flow with the effect of moving bottleneck. Moreover, typical time–space diagram for a two-lane highway shows the formation and dissipation of a moving bottleneck. Results demonstrate that the effect of moving bottleneck enlarges with the increase of traffic density, but the effect can be reduced by increasing the maximum velocity of heavy truck. The effects of multiple moving bottlenecks under different conditions are investigated. The effect becomes more remarkable when the coupling effect of multiple moving bottlenecks occurs.
Keywords:  traffic flow      moving bottleneck      lane changing      coupling effect  
Received:  24 December 2012      Revised:  08 April 2013      Accepted manuscript online: 
PACS:  89.40.-a (Transportation)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11102165), the Natural Science Basis Research Plan in Shaanxi Province, China (Grant No. 2012JM1001), and the Foundation for Fundamental Research of Northwestern Polytechnical University, China (Grant No. NPU-FFR-JC201254).
Corresponding Authors:  Chen Jian-Zhong     E-mail:  jzhchen@nwpu.edu.cn

Cite this article: 

Fang Yuan (方远), Chen Jian-Zhong (陈建忠), Peng Zhi-Yuan (彭志远) The effect of moving bottlenecks on a two-lane traffic flow 2013 Chin. Phys. B 22 108902

[1] Nagel K and Schreckenberg M 1992 J. Phys. I France 2 2221
[2] Nagatani T 2002 Rep. Prog. Phys. 65 1331
[3] Chen J Z, Shi Z K and Hu Y M 2012 Int. J. Mod. Phys. 23 1250048
[4] Jin C J, Wang W, Gao K and Jiang R 2011 Chin. Phys. B 20 064501
[5] Helbing D, Isobe M, Nagatani T and Takimoto K 2003 Phys. Rev. E 67 067101
[6] Safonov L A, Tomer E, Strygin V V and Havlin S 2000 Physica A 285 147
[7] Chen J Z, Shi Z K and Hu Y M 2012 J. Zhejiang Univ.-Sci. C 13 29
[8] Bentaleb K, Jetto K, Ez-Zahraouy H and Benyoussef A 2013 Chin. Phys. B 22 018902
[9] Jiang R, Helbing D, Shukla P K and Wu Q S 2006 Physica A 368 567
[10] Ning H X and Xue Y 2012 Chin. Phys. B 21 040506
[11] Kerner B S and Klenov S L 2002 J. Phys. A: Math. Gen. 35 31
[12] Tang C F, Jiang R and Wu Q S 2007 Chin. Phys. 16 1570
[13] Nagatani T 2007 Physica A 377 651
[14] Liu W K, Guan Z H and Liao R Q 2010 Chin. Phys. Lett. 27 108902
[15] Naito Y and Nagatani T 2012 Physica A 391 1626
[16] Li C Y, Tang T Q, Huang H J and Shang H Y 2011 Chin. Phys. Lett. 28 038902
[17] Laval J A and Daganzo C F 2006 Transpn. Res. Part B 40 251
[18] Hoogendoorn S P and Bovy P H L 2001 Transpn. Res. Part B 35 317
[19] Komada K, Masukura S and Nagatani T 2009 Physica A 388 2880
[20] Jin W L 2010 Transpn. Res. Part B 44 1001
[21] Nagatani T and Sugiyama N 2013 Physica A 392 851
[22] Nagatani T 1998 Physica A 261 599
[23] Tang T Q, Huang H J, Xu X Y and Xue Y 2007 Chin. Phys. Lett. 24 1410
[24] Chen Y S, Xiao R M, Ma L and Qin H R 2008 Journal of Traffic and Transportation Engineering 8 91 (in Chinese)
[25] Chen Y S, Xiao R M and Qin H R 2009 Journal of Traffic and Transportation Engineering 9 83 (in Chinese)
[26] Li Y 2009 "The Research on Moving Bottleneck on Expressway Based on the Cellular Automata Simulation", M. S. Thesis (Changsha: Changsha University of Science & Technology) (in Chinese)
[27] Gazis D C and Herman R 1992 Transpn. Sci. 26 223
[28] Newell G F 1998 Transpn. Res. B 32 531
[29] Muñoz J C and Daganzo C F 2002 Proceedings of the 15th International Symposium on Transportation and Traffic Theory, July 16, 2002, Pergamon, Adelaide, Australia, p. 441
[30] Juran I, Prashker J N, Bekhor S and Ishai I 2009 Transpn. Res. Part C 17 240
[31] Kerner B S and Klenov S L 2010 J. Phys. A: Math. Theor. 43 425101
[32] Masukura S, Nagatani T and Tanaka K 2009 Physica A 388 1196
[33] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[34] Bando M, Hasebe K, Nakayama A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[1] Effect of kinetic ions on the toroidal double-tearing modes
Ruibo Zhang(张睿博), Lei Ye(叶磊), Yang Chen, Nong Xiang(项农), and Xiaoqing Yang(杨小庆). Chin. Phys. B, 2023, 32(2): 025203.
[2] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[3] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[4] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[5] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[6] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[7] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[8] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[9] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[10] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[11] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[12] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[13] Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2020, 29(11): 117501.
[14] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[15] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
No Suggested Reading articles found!