Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 104208    DOI: 10.1088/1674-1056/22/10/104208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical bistability induced by quantum coherence in a negative index atomic medium

Zhang Hong-Jun (张红军)a c, Guo Hong-Ju (郭洪菊)b, Sun Hui (孙辉)a, Li Jin-Ping (李金萍)a, Yin Bao-Yin (尹宝银)a
a College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China;
b Department of Printing Equipment Engineering, Shanghai Publishing and Printing College, Shanghai 200093, China;
c Institute for Quantum Science and Engineering and Department of Physics and Astronomy, Texas A & M University, 77840, USA
Abstract  Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme.
Keywords:  optical bistability      quantum coherence      negative refractive index      atomic medium  
Received:  26 December 2012      Revised:  23 January 2013      Accepted manuscript online: 
PACS:  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the Fundamental Research Funds for the Central University (Grant Nos. GK201002024 and GK201003003), the National Natural Science Foundation of China (Grant Nos. 11104176 and 11104185), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2011JQ1008), the Special Fund of Shanghai Outstanding Young Teachers, China (Grant Nos. slg10054 and slg10023), and the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 11YZ118).
Corresponding Authors:  Guo Hong-Ju     E-mail:  mermaid@siom.ac.cn

Cite this article: 

Zhang Hong-Jun (张红军), Guo Hong-Ju (郭洪菊), Sun Hui (孙辉), Li Jin-Ping (李金萍), Yin Bao-Yin (尹宝银) Optical bistability induced by quantum coherence in a negative index atomic medium 2013 Chin. Phys. B 22 104208

[1] Bowden C, Ciftan M M and Robl H 1981 Optical Bistability (New York: Plenum)
[2] Gibbs H M 1985 Optical Bistability (Orlando: Academic)
[3] Gibbs H M, McCall S L and Venkatesan T N C 1976 Phys. Rev. Lett. 36 1135
[4] Rosenberger A T, Orozco L A and Kimble H J 1983 Phys. Rev. A 28 2569
[5] Wang H, Goorskey D J and Xiao M 2001 Phys. Rev. A 65 011801
[6] Stegeman G I, Assanto G, Zanoni R, Seaton C T, Garmire E, Maradudin A A, Reinisch R and Vitrant G 1988 Appl. Phys. Lett. 52 869
[7] Thirstrip C 1995 IEEE J. Quantum Electron. 31 2101
[8] Winful H G, Marburger J H and Garmire E 1979 Appl. Phys. Lett. 35 379
[9] Wang Z L, Yang Z J and Min N B 1996 Chin. Phys. Lett. 13 109
[10] Chen L X, Deng X X, Ding W Q, Zhang Y and Liu S T 2002 Chin. Phys. Lett. 19 798
[11] Dubovitsky S and Steier W H 1992 IEEE J. Quantum Electron. 28 585
[12] Zhou L, Pu H, Zhang K, Zhao X D and Zhang W 2011 Phys. Rev. A 84 043606
[13] Zheng Q, Li S C, Zhang X P, You T J and Fu L B 2012 Chin. Phys. B 21 093702
[14] Yang S, Al-Amri M, Evers J and Zubairy M S 2011 Phys. Rev. A 83 053821
[15] Li J H 2007 Phys. Rev. B 75 155329
[16] Feise M W, Shadrivov I V and Kivshar Y S 2004 Appl. Phys. Lett. 85 1451
[17] Litchinitse N M, Gabitov I R and Maimistov A I 2007 Phys. Rev. Lett. 99 113902
[18] Chen P, Farhat M and Alu A 2011 Phys. Rev. Lett. 106 105503
[19] Shi H Y, Jiang Y Y, Sun X D, Guo R H and Zhao Y P 2005 Chin. Phys. 14 1571
[20] Veselago V G 1968 Sov. Phys. Usp. 10 509
[21] Joshi A and Xiao M 2003 Phys. Rev. Lett. 91 143904
[22] Joshi A, Yang W G and Xiao M 2003 Phys. Lett. A 315 203
[23] Chang Z G, Niu Y P, Zhang J T and Gong S Q 2012 Chin. Phys. B 21 114210
[24] Gong S Q, Du S D, Xu Z Z and Pan S H 1996 Phys. Lett. A 222 237
[25] Pendry J B 2003 Opt. Express 11 639
[26] Oktel M Ö and Müstecaplioğlu Ö E 2004 Phys. Rev. A 70 053806
[27] Zhang H, Niu Y and Gong S 2007 Phys. Lett. A 363 497
[28] Antón M A and Calderón O G 2002 J. Opt. B: Quantum Semiclass. Opt. 4 91
[29] Bonifacio R and Lugiato L A 1978 Phys. Rev. A 18 1129
[30] Meystre P 1978 Opt. Commun. 26 277
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[3] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[4] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[5] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[8] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[9] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[10] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[11] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[12] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[13] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[14] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[15] Controllable optical bistability in a three-mode optomechanical system with a membrane resonator
Jiakai Yan(闫甲楷), Xiaofei Zhu(朱小霏), Bin Chen(陈彬). Chin. Phys. B, 2018, 27(7): 074214.
No Suggested Reading articles found!