|
|
Time-dependent density functional theoretical studies on the photo-induced dynamics of an HCl molecule encapsulated in C60 under femtosecond laser pulses |
Liu Dan-Dan (刘丹丹)a b, Zhang Hong (张红)a b c |
a Institution of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
b College of Physical Science and Technology, Sichuan University, Chengdu 610065, China;
c Key Laboratory of High Energy Density Physics and Technology (Ministry of Education), Sichuan University, Chengdu 610064, China |
|
|
Abstract By using first-principles simulations based on time-dependent density functional theory, the chemical reaction of an HCl molecule encapsulated in C60 induced by femtosecond laser pulses is observed. The H atom starts to leave the Cl atom and is reflected by the C60 wall. The coherent nuclear dynamic behaviors of bond breakage and recombination of the HCl molecule occurring in both polarized parallel and perpendicular to the H–Cl bond axis are investigated. The radial oscillation is also found in the two polarization directions of the laser pulse. The relaxation time of the H–Cl bond lengths in transverse polarization is slow in comparison with that in longitudinal polarization. Those results are important for studying the dynamics of the chemical bond at an atomic level.
|
Received: 26 January 2013
Revised: 09 April 2013
Accepted manuscript online:
|
PACS:
|
31.70.Hq
|
(Time-dependent phenomena: excitation and relaxation processes, and reaction rates)
|
|
32.80.Wr
|
(Other multiphoton processes)
|
|
33.15.Fm
|
(Bond strengths, dissociation energies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074176 and 10976019) and the Doctoral Program of Higher Education of China (Grant No. 20100181110080). |
Corresponding Authors:
Zhang Hong
E-mail: hongzhang@scu.edu.cn
|
Cite this article:
Liu Dan-Dan (刘丹丹), Zhang Hong (张红) Time-dependent density functional theoretical studies on the photo-induced dynamics of an HCl molecule encapsulated in C60 under femtosecond laser pulses 2013 Chin. Phys. B 22 103103
|
[1] |
Kreibig U and Vollmer M 1993 Optical Properties of Metal Clusters, Springer Series in Materials Science, Vol. 25 (Berlin: Springer-Verlag)
|
[2] |
Faisal 1987 Theory of Multiphoton Processes (New York: Plenum Press)
|
[3] |
Zhang Y P, Zhang F S, Meng K L and Xiao G Q 2007 Chin. Phys. 16 83
|
[4] |
Yue D G, Zheng X Y, Liu H, Wang C X and Meng Q T 2009 Chin. Phys. B 18 1479
|
[5] |
Zweiback J, Smith R A, Cowan T E, Hays G, Wharton K B, Yanovsky V P and Ditmire T D 2000 Phys. Rev. Lett. 84 2634
|
[6] |
Köller L, Schumacher M, Köhn J, Teuber S, Tiggesbäumker J and Meiwes-Broer K H 1999 Phys. Rev. Lett. 82 3783
|
[7] |
Li X, Ren H Z, Ma R, Chen J X, Yang H and Gong Q H 2004 Chin. Phys. 13 1564
|
[8] |
Zuo T, Chelkowski S and Bandrauk A D 1993 Phys. Rev. A 48 3837
|
[9] |
Chelkowski S, Conjusteau A, Zuo T and Bandrauk A 1996 Phys. Rev. A 54 3235
|
[10] |
Bucksbaum P H, Zavriyev A, Muller H G and Schumacher D W 1990 Phys. Rev. Lett. 64 1883
|
[11] |
Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F and Langley A J 1999 Phys. Rev. Lett. 83 3625
|
[12] |
Daniel C, Full J, González L, Lupulescu C, Manz J, Merli A, Vajda S and Woste L 2003 Science 299 536
|
[13] |
González Ureña A, Gasmi K, Skowronek S, Rubio A and Echenique P M 2004 Eur. Phys. J. D 28 193
|
[14] |
Miyamoto Y, Zhang H and Rubio A 2010 Rhys. Rev. Lett. 105 248301
|
[15] |
Campbell E E B, Hansen K, Hoffmann K, Korn G, Tchaplyguine M, Wittmann M and Hertel I V 2000 Phys. Rev. Lett. 84 2128
|
[16] |
Boyle M, Hoffmann K, Schulz C P, Hertel I V, Levine R D and Campbell E E B 2001 Phys. Rev. Lett. 87 273401
|
[17] |
Bhardwaj V R, Corkum P B and Rayner D M 2003 Phys. Rev. Lett. 91 203004
|
[18] |
Hertel I V, Laarmann T and Schulz C P 2005 Adv. At. Mol. Opt. Phys. (San Diego: Elsevier Academic Press) Vol. 50 p. 219
|
[19] |
Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
|
[20] |
Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601
|
[21] |
Castro A, Marques M A L, Alonso J A, Bertsch G F and Rubio A 2004 Eur. Phys. J. D 28 211
|
[22] |
Castro A, Räsänen E, Rubio A and Gross E K U 2009 Europhys. Lett. 87 53001
|
[23] |
Adachi M, Yamane K, Morita R and Yamashita M 2005 Jpn. J. Appl. Phys. 44 L1423
|
[24] |
Rung E and Gross E K U 1984 Phys. Rev. Lett. 52 997
|
[25] |
Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
|
[26] |
Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Comput. Commun. 151 60
|
[27] |
Spielmann Ch, Burnett N H, Sartania S, Koppitsch R, Schnürer M, Kan C, Lenzner M, Wobrauschek P and Krausz F 1997 Science 278 661
|
[28] |
Zhang H and Miyamoto Y 2012 Phys. Rev. B 85 033402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|