Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 103301    DOI: 10.1088/1674-1056/22/10/103301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Control of the photoionization/photodissociation processes of cyclopentanone with trains of femtosecond laser pulses

Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Yang Xue (杨雪), Sun Chang-Kai (孙长凯), Zhang Cong-Cong (张丛丛), Hu Zhan (胡湛)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130021, China
Abstract  A train of three equally spaced femtosecond laser pulses is employed to control the photoionization/photodissociation processes of cyclopentanone. With the increase of pulse separation, a strong modulation of product ion yield is observed. More than ten-fold changes of ion yield ratio between different products can be realized. The experimental observations further explain the compositions and formation pathways of peaks in the mass spectra. The controlling mechanisms are also discussed.
Keywords:  shaped femtosecond pulse      coherent control      time-of-flight mass spectra      photoionization and photodissociation  
Received:  03 February 2013      Revised:  03 April 2013      Accepted manuscript online: 
PACS:  33.80.R  
Fund: Project supported by the National Basic Research Program of China (973 Program) (Grant No. 2013CB922200), the National Natural Science Foundation of China, (Grant Nos. 10774056 and 10974070), the Fundamental Research Funds for the Central Universities, China (Grant No. 200903371), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20100061110045).
Corresponding Authors:  Hu Zhan     E-mail:  huzhan@jlu.edu.cn

Cite this article: 

Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Yang Xue (杨雪), Sun Chang-Kai (孙长凯), Zhang Cong-Cong (张丛丛), Hu Zhan (胡湛) Control of the photoionization/photodissociation processes of cyclopentanone with trains of femtosecond laser pulses 2013 Chin. Phys. B 22 103301

[1] Damrauer N H, Dietl C, Krampert G, Lee S H, Jung K H and Gerber G 2002 Eur. Phys. J. D 20 71
[2] Gordon R J and Rice S A 1997 Ann. Rev. Phys. Chem. 48 601
[3] Brumer P and Shapiro M 1986 Chem. Phys. Lett. 126 541
[4] Carley R E, Heesel E and Fielding H H 2005 Chem. Soc. Rev. 34 949
[5] Zewail A H 2000 Angew. Chem. Int. Ed. 39 2586
[6] Zewail A H 1993 J. Phys. Chem. 97 12427
[7] Zewail A H 2000 Pure Appl. Chem. 72 2219
[8] Chen D Y, Zhang S and Xia Y Q 2009 Chin. Phys. B 18 3073
[9] Guo W, Zhu J Y, Wang B X, WangY Q and Wang L 2009 Chin. Phys. Lett. 26 013201
[10] Zhang S A, Wang Z G and Sun Z R 2008 Chin. Phys. B 17 2914
[11] Qin C C, Zhao X D, Zhang X Z and Liu Y F 2013 Chin. Phys. Lett. 30 023302
[12] Tannor D J and Rice S A 1985 J. Chem. Phys. 83 5013
[13] Weiner A M 2000 Rev. Sci. Instrum. 71 1929
[14] Xu Y, Zhang S A, Zhang L, Sun Z R, Zhang X Y, Chen G L, Wang Z G, Li R X and Xu Z Z 2005 Chin. Phys. Lett. 22 2557
[15] Plenge J, Wirsing A, Drebenstedt I W, Halfpap I, Kieling B, Wassermann B and Ruhl E 2011 Phys. Chem. Chem. Phys. 13 8705
[16] Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M and Gerber G 1998 Science 282 919
[17] Levis R J, Menkir G M and Rabitz H 2001 Science 292 709
[18] Cardoza D, Baertschy M and Weinacht T 2005 J. Chem. Phys. 123 074315
[19] Zhang S A, Sun Z R, Zhang X Y, Xu Y, Wang Z G, Xu Z Z and Li R X 2005 Chem. Phys. Lett. 415 346
[20] Nalda R D, Horn C, Wollenhaupt M, Krug M, Banares L and Baumert T 2007 J. Raman Spectrosc. 38 543
[21] Pastirk I, Kangas M and Dantus M 2005 J. Phys. Chem. A 109 2413
[22] Oron D, Dudovich N and Silberberg Y 2003 Phys. Rev. Lett. 90 213902
[23] Wollenhaupt M, Präkelt A, Tudoran C S, Liese D, Bayer T and Baumert T 2006 Phys. Rev. A 73 063409
[24] Cruz J M D, Lozovoy V V and Dantus M 2005 J. Phys. Chem. A 109 8447
[25] Wnuk P and Radzewicz C 2007 Opt. Commun. 272 496
[26] Wu D, Wang Q Q, Cheng X H, Jin M X, Li X Y, Hu Z and Ding D J 2007 J. Phys. Chem. A 111 9494
[27] Wang Q Q, Wu D, Jin M X, Liu F C, Hu F F, Cheng X H, Liu H, Hu Z, Ding D J, Mineo H, Dyakov Y A, Mebel A M, Chao S D and Lin S H 2008 J. Chem. Phys. 129 204302
[28] Song Y D, Chen Z, Sun C K and Hu Z 2013 Chin. Phys. B 22 013302
[29] Hu Z, Singha S and Gordon R J 2010 Phys. Rev. B 82 115204
[30] Singha S, Hu Z and Gordon R J 2011 J. Phys. Chem. A 115 6093
[31] Hou B, Easter J H, Nees J A, He Z, Thomas A G R and Krushelnick K 2012 Opt. Lett. 37 1385
[32] Suzuki T, Sugawara Y, Minemoto S and Sakai H 2008 Phys. Rev. Lett. 100 033603
[33] Wu C Y, Xiong Y J, Wang J X and Kong F A 2000 Chin. Chem. Lett. 11 545
[34] Kosmidis C, Tzallas P, Ledingham K W D, Mccanny T, Singhal R P, Taday P F and Langley A J 1999 J. Phys. Chem. A 103 6950
[35] Kosmidis C, Philis J G and Tzallas P 1999 Phys. Chem. Chem. Phys. 1 2945
[36] Klippenstein S J 1992 J. Chem. Phys. 96 367
[37] Satyapal S, Johnston G W, Bersohn R and Oref I 1990 J. Chem. Phys. 93 6398
[38] Lozovoy V V, Pastirk I and Dantus M 2004 Opt. Lett. 29 775
[39] Walowicz K A, Pastirk I, Lozovoy V V and Dantus M 2002 J. Phys. Chem. A 106 9369
[40] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven T Jr, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong W, Gonzalez C and Pople J A 2003 Gaussian 03 (Pittsburgh PA: Gaussian Inc.,)
[1] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[2] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[3] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[4] Coherent control of fragmentation of methyl iodide by shaped femtosecond pulse train
Qiu-Nan Tong(佟秋男), De-Hou Fei(费德厚), Zhen-Zhong Lian(廉振中), Hong-Xia Qi(齐洪霞), Sheng-Peng Zhou(周胜鹏), Si-Zuo Luo(罗嗣佐), Zhou Chen(陈洲), Zhan Hu(胡湛). Chin. Phys. B, 2019, 28(9): 093201.
[5] Femtosecond strong-field coherent control of nonresonant ionization with shaped pulses
Qiu-Nan Tong(佟秋男), Zhen-Zhong Lian(廉振中), Liang Zhao(赵亮), Hong-Xia Qi(齐洪霞), Zhou Chen(陈洲), Zhan Hu(胡湛). Chin. Phys. B, 2019, 28(3): 033201.
[6] Identification of isomers and control of ionization and dissociation processes using dual-mass-spectrometer scheme and genetic algorithm optimization
Chen Zhou (陈洲), Tong Qiu-Nan (佟秋男), Zhang Cong-Cong (张丛丛), Hu Zhan (胡湛). Chin. Phys. B, 2015, 24(4): 043303.
[7] Field-free orientation of diatomic molecule via the linearly polarized resonant pulses
Li Su-Yu (李苏宇), Guo Fu-Ming (郭福明), Wang Jun (王俊), Yang Yu-Jun (杨玉军), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(10): 104205.
[8] Ultrafast population transfer in a Λ-configuration level system driven by few-cycle laser pulses
Zhang Wen-Jing (张文静), Xie Xiao-Tao (谢小涛), Jin Lu-Ling (金璐玲), Bai Jin-Tao (白晋涛). Chin. Phys. B, 2013, 22(11): 114210.
[9] Angular distributions of CH3I fragment ions under the irradiation of single pulse and trains of ultrashort laser pulses
Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Sun Chang-Kai (孙长凯), Hu Zhan (胡湛). Chin. Phys. B, 2013, 22(1): 013302.
[10] Highly selective population of two excited states in nonresonant two-photon absorption
Zhang Hui(张晖), Zhang Shi-An(张诗按), and Sun Zhen-Rong(孙真荣) . Chin. Phys. B, 2011, 20(8): 083202.
[11] Laser pulse design for coherent control of Rydberg lithium atoms
Zhang Xian-Zhou(张现周), Wu Su-Ling(伍素玲), Jiang Li-Juan(蒋利娟), Ma Huan-Qiang(马欢强), and Jia Guang-Rui(贾光瑞). Chin. Phys. B, 2010, 19(8): 083101.
[12] Coherent control of non-resonant two-photon transition in molecular system
Zhang Hui(张晖), Zhang Shi-An(张诗按), Wang Zu-Geng(王祖赓), and Sun Zhen-Rong(孙真荣). Chin. Phys. B, 2010, 19(11): 113208.
[13] The dissociation pathways of N2+ in intense femtosecond laser fields
Chen De-Ying(陈德应), Zhang Sheng(张盛), and Xia Yuan-Qin(夏元钦). Chin. Phys. B, 2009, 18(7): 3073-3078.
[14] Quantum coherent control of two-photon transitions by square phase-modulation
Zhang Shi-An(张诗按), Wang Zu-Geng(王祖赓), and Sun Zhen-Rong(孙真荣). Chin. Phys. B, 2008, 17(8): 2914-2918.
[15] Two-colour coherent control of multiphoton ionization: a comparison between long-range and short-range potential model atoms
Li Peng-Cheng(李鹏程) and Zhou Xiao-Xin(周效信). Chin. Phys. B, 2007, 16(10): 2946-2951.
No Suggested Reading articles found!