|
|
Control of the photoionization/photodissociation processes of cyclopentanone with trains of femtosecond laser pulses |
Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Yang Xue (杨雪), Sun Chang-Kai (孙长凯), Zhang Cong-Cong (张丛丛), Hu Zhan (胡湛) |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130021, China |
|
|
Abstract A train of three equally spaced femtosecond laser pulses is employed to control the photoionization/photodissociation processes of cyclopentanone. With the increase of pulse separation, a strong modulation of product ion yield is observed. More than ten-fold changes of ion yield ratio between different products can be realized. The experimental observations further explain the compositions and formation pathways of peaks in the mass spectra. The controlling mechanisms are also discussed.
|
Received: 03 February 2013
Revised: 03 April 2013
Accepted manuscript online:
|
|
Fund: Project supported by the National Basic Research Program of China (973 Program) (Grant No. 2013CB922200), the National Natural Science Foundation of China, (Grant Nos. 10774056 and 10974070), the Fundamental Research Funds for the Central Universities, China (Grant No. 200903371), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20100061110045). |
Corresponding Authors:
Hu Zhan
E-mail: huzhan@jlu.edu.cn
|
Cite this article:
Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Yang Xue (杨雪), Sun Chang-Kai (孙长凯), Zhang Cong-Cong (张丛丛), Hu Zhan (胡湛) Control of the photoionization/photodissociation processes of cyclopentanone with trains of femtosecond laser pulses 2013 Chin. Phys. B 22 103301
|
[1] |
Damrauer N H, Dietl C, Krampert G, Lee S H, Jung K H and Gerber G 2002 Eur. Phys. J. D 20 71
|
[2] |
Gordon R J and Rice S A 1997 Ann. Rev. Phys. Chem. 48 601
|
[3] |
Brumer P and Shapiro M 1986 Chem. Phys. Lett. 126 541
|
[4] |
Carley R E, Heesel E and Fielding H H 2005 Chem. Soc. Rev. 34 949
|
[5] |
Zewail A H 2000 Angew. Chem. Int. Ed. 39 2586
|
[6] |
Zewail A H 1993 J. Phys. Chem. 97 12427
|
[7] |
Zewail A H 2000 Pure Appl. Chem. 72 2219
|
[8] |
Chen D Y, Zhang S and Xia Y Q 2009 Chin. Phys. B 18 3073
|
[9] |
Guo W, Zhu J Y, Wang B X, WangY Q and Wang L 2009 Chin. Phys. Lett. 26 013201
|
[10] |
Zhang S A, Wang Z G and Sun Z R 2008 Chin. Phys. B 17 2914
|
[11] |
Qin C C, Zhao X D, Zhang X Z and Liu Y F 2013 Chin. Phys. Lett. 30 023302
|
[12] |
Tannor D J and Rice S A 1985 J. Chem. Phys. 83 5013
|
[13] |
Weiner A M 2000 Rev. Sci. Instrum. 71 1929
|
[14] |
Xu Y, Zhang S A, Zhang L, Sun Z R, Zhang X Y, Chen G L, Wang Z G, Li R X and Xu Z Z 2005 Chin. Phys. Lett. 22 2557
|
[15] |
Plenge J, Wirsing A, Drebenstedt I W, Halfpap I, Kieling B, Wassermann B and Ruhl E 2011 Phys. Chem. Chem. Phys. 13 8705
|
[16] |
Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M and Gerber G 1998 Science 282 919
|
[17] |
Levis R J, Menkir G M and Rabitz H 2001 Science 292 709
|
[18] |
Cardoza D, Baertschy M and Weinacht T 2005 J. Chem. Phys. 123 074315
|
[19] |
Zhang S A, Sun Z R, Zhang X Y, Xu Y, Wang Z G, Xu Z Z and Li R X 2005 Chem. Phys. Lett. 415 346
|
[20] |
Nalda R D, Horn C, Wollenhaupt M, Krug M, Banares L and Baumert T 2007 J. Raman Spectrosc. 38 543
|
[21] |
Pastirk I, Kangas M and Dantus M 2005 J. Phys. Chem. A 109 2413
|
[22] |
Oron D, Dudovich N and Silberberg Y 2003 Phys. Rev. Lett. 90 213902
|
[23] |
Wollenhaupt M, Präkelt A, Tudoran C S, Liese D, Bayer T and Baumert T 2006 Phys. Rev. A 73 063409
|
[24] |
Cruz J M D, Lozovoy V V and Dantus M 2005 J. Phys. Chem. A 109 8447
|
[25] |
Wnuk P and Radzewicz C 2007 Opt. Commun. 272 496
|
[26] |
Wu D, Wang Q Q, Cheng X H, Jin M X, Li X Y, Hu Z and Ding D J 2007 J. Phys. Chem. A 111 9494
|
[27] |
Wang Q Q, Wu D, Jin M X, Liu F C, Hu F F, Cheng X H, Liu H, Hu Z, Ding D J, Mineo H, Dyakov Y A, Mebel A M, Chao S D and Lin S H 2008 J. Chem. Phys. 129 204302
|
[28] |
Song Y D, Chen Z, Sun C K and Hu Z 2013 Chin. Phys. B 22 013302
|
[29] |
Hu Z, Singha S and Gordon R J 2010 Phys. Rev. B 82 115204
|
[30] |
Singha S, Hu Z and Gordon R J 2011 J. Phys. Chem. A 115 6093
|
[31] |
Hou B, Easter J H, Nees J A, He Z, Thomas A G R and Krushelnick K 2012 Opt. Lett. 37 1385
|
[32] |
Suzuki T, Sugawara Y, Minemoto S and Sakai H 2008 Phys. Rev. Lett. 100 033603
|
[33] |
Wu C Y, Xiong Y J, Wang J X and Kong F A 2000 Chin. Chem. Lett. 11 545
|
[34] |
Kosmidis C, Tzallas P, Ledingham K W D, Mccanny T, Singhal R P, Taday P F and Langley A J 1999 J. Phys. Chem. A 103 6950
|
[35] |
Kosmidis C, Philis J G and Tzallas P 1999 Phys. Chem. Chem. Phys. 1 2945
|
[36] |
Klippenstein S J 1992 J. Chem. Phys. 96 367
|
[37] |
Satyapal S, Johnston G W, Bersohn R and Oref I 1990 J. Chem. Phys. 93 6398
|
[38] |
Lozovoy V V, Pastirk I and Dantus M 2004 Opt. Lett. 29 775
|
[39] |
Walowicz K A, Pastirk I, Lozovoy V V and Dantus M 2002 J. Phys. Chem. A 106 9369
|
[40] |
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven T Jr, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong W, Gonzalez C and Pople J A 2003 Gaussian 03 (Pittsburgh PA: Gaussian Inc.,)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|