Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100502    DOI: 10.1088/1674-1056/22/10/100502
GENERAL Prev   Next  

Reliability of linear coupling synchronization of hyperchaotic systems with unknown parameters

Li Fan (李凡), Wang Chun-Ni (王春妮), Ma Jun (马军)
Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China
Abstract  Complete synchronization could be reached between some chaotic and/or hyperchaotic systems under linear coupling. More generally, the conditional Lyapunov exponents are often calculated to confirm the stability of synchronization and reliability of linear controllers. In this paper, detailed proof and measurement of the reliability of linear controllers are given by constructing a Lyapunov function in the exponential form. It is confirmed that two hyperchaotic systems can reach complete synchronization when two linear controllers are imposed on the driven system unidirectionally and the unknown parameters in the driving systems are estimated completely. Finally, it gives the general guidance to reach complete synchronization under linear coupling for other chaotic and hyperchaotic systems with unknown parameters.
Keywords:  parameter estimation      exponential Lyapunov function      parameter observer      linear coupling  
Received:  19 February 2013      Revised:  01 April 2013      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported partially by the National Natural Science Foundation of China (Grant No. 11265008).
Corresponding Authors:  Ma Jun     E-mail:  hyperchaos@163.com

Cite this article: 

Li Fan (李凡), Wang Chun-Ni (王春妮), Ma Jun (马军) Reliability of linear coupling synchronization of hyperchaotic systems with unknown parameters 2013 Chin. Phys. B 22 100502

[1] Boccaletti S, Grebogi C, Lai Y C, Lai Y C, Mancini H and Maza D 2000 Phys. Rep. 329 103
[2] Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou C S 2002 Phys. Rep. 366 1
[3] Rössler O E 1979 Phys. Lett. A 71 155
[4] Liu C X and Liu L 2009 Chin. Phys. B 18 2188
[5] Perc M and Marhl M 2003 Biophys. Chem. 104 509
[6] Krese B, Perc M and Govekar E 2010 Chaos 20 013129
[7] Yang N N, Liu C X and Wu C J 2010 Chin. Phys. B 19 100502
[8] Krese B, Perc M and Govekar E 2011 Int. J. Bifurc. Chaos 21 1689
[9] Lü J H and Chen G R 2006 Int. J. Bifurc. Chaos 16 775
[10] Yu S M, Lü J H, Chen G R and Xu X H 2012 IEEE Trans. Circ. Syst. I 59 1015
[11] Kanso A, Yahyaoui H and Almulla M 2012 Informat. Sci. 186 249
[12] Li D, Hu G and Wang S H 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2579
[13] Huang Z Q 2011 Commun. Nonlinear Sci. Numer. Simul. 16 3245
[14] Ahmed F, Siyal M Y and Abbas V U 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1338
[16] Raphael C W and Wagner D 2006 Computers & Security 25 131
[17] Stinson D R, Wei R and Chen K 2008 J. Combinatorial Theory Series A 115 105
[18] Hirai Y, Kurokawa T, Matsuo S, Tanaka H and Yamamura A 2008 IEICE Trans. Fundamentals Electron. 91 64
[19] Kocarev L and Parlitz U 1995 Phys. Rev. Lett. 74 5028
[20] Boccaletti S, Farini A and Arecchi F T 1997 Phys. Rev. E 55 4979
[21] d’Anjou A, Sarasola C, Torrealdea F J, Orduna R and Graña M 2001 Phys. Rev. E 63 046213
[22] Mata-Machuca J L, Martínez-Guerra R and Aguilar-López R 2012 Commun. Nonlinear Sci. Numer Simul. 17 1706
[23] Wu D and Li J J 2010 Chin. Phys. B 19 120505
[24] Wang X Y, Zhang N, Ren X L and Zhang Y L 2011 Chin. Phys. B 20 020507
[25] Moskalenko O I, Koronovskii A A and Hramov A E 2010 Phys. Lett. A 374 2925
[26] Zhu H B, Qiu F and Cui B T 2010 Chin. Phys. B 19 030515
[27] Volman V, Perc M and Bazhenov M 2011 PLoS One 6 e20572
[28] Wang Q Y, Chen G R and Perc M 2011 PLOS One 6 e15851
[29] Wang Q Y, Perc M, Duan Z S and Chen G R 2010 Physica A 389 3299
[30] Fell J and Axmacher N 2011 Nat. Rev. Neurosci. 12 105
[31] Torrealdea F J, Sarasola C, d’Anjou A, Moujahid A and Vélez de Mendizábal N 2009 BioSysts. 97 60
[32] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev. Lett. 76 1804
[33] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 4193
[34] Wang Z L 2009 Commun. Nonlinear Sci. Numer. Simul. 14 2366
[35] Li F, Liu Q R, Guo H Y, Zhao Y H, Tang J and Ma J 2012 Nonlinear Dyn. 69 2169
[36] Ma J, Zhang A H, Xia Y F and Zhang L P 2010 Appl. Math. Comput. 215 3318
[37] Wang C N, Ma J and Jin W Y 2012 Dyn. Syst. 27 253
[38] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[39] Boulkroune A and M’saad M 2012 J. Vib. Control 18 437
[40] Luo R Z, Deng S C and Wei Z M 2010 J. Vib. Control 17 1099
[41] Wei W, Li D H and Wang J 2010 Chin. Phys. B 19 040507
[42] Liu W B, Wallace K S and Chen G R 2011 Chin. Phys. B 20 090510
[43] Lü J H and Chen G R 2002 Int. J. Bifurc. Chaos 12 659
[44] Li X W and Zheng Z G 2007 Commun. Theor. Phys. 47 265
[45] Tamasevicius A and Cenys A 1997 Phys. Rev. E 55 297
[46] Lü J H and Chen G R 2005 IEEE Trans. Autom. Control 50 841
[47] Squartini S, Lü J H and Wei Q L 2013 Neural Comput. Appl. 22 203
[48] Lu X Q, Lu R Q, Chen S H and Lü J H 2013 IEEE Trans. Circ. Syst. I 60 352
[49] Li Z and Han C Z 2001 Chin. Phys. 10 494
[50] Li Z and Han C Z 2002 Chin. Phys. 11 9
[51] Chen S H, Zhao L M and Liu J 2002 Chin. Phys. 11 543
[52] Mu J, Tao C and Du G H 2003 Chin. Phys. 12 381
[53] Sang J Y, Yang J and Yue L J 2011 Chin. Phys. B 20 080507
[54] Zhang R X and Yang S P 2011 Chin. Phys. B 20 090512
[55] Huang D X and Wang J Y 2008 Acta Phys. Sin. 57 2755 (in Chinese)
[56] Zeng Y C, Fu Z J and Chen Z 2008 Acta Phys. Sin. 57 46 (in Chinese)
[57] Li L X, Yang Y X, Peng H P and Wang X D 2007 Acta Phys. Sin. 56 51 (in Chinese)
[58] Li X T and Yin M H 2012 Chin. Phys. B 21 050507
[59] Li N Q, Pan W, Yan L S and Luo B 2011 Chin. Phys. B 20 060502
[60] Huang L L and Qi X 2013 Acta Phys. Sin. 62 080507 (in Chinese)
[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[3] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[4] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[5] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[6] Quantum estimation of detection efficiency with no-knowledge quantum feedback
Dong Xie(谢东), Chunling Xu(徐春玲). Chin. Phys. B, 2018, 27(6): 060303.
[7] Quantum parameter estimation in a spin-boson dephasing quantum system by periodical projective measurements
Le Yang(杨乐), Hong-Yi Dai(戴宏毅), Ming Zhang(张明). Chin. Phys. B, 2018, 27(4): 040601.
[8] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[9] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
[10] Enhancing parameter precision of optimal quantum estimation by quantum screening
Huang Jiang(黄江), Guo You Neng(郭有能), Xie Qin(谢钦). Chin. Phys. B, 2016, 25(2): 020303.
[11] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[12] Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Ke (曾可). Chin. Phys. B, 2015, 24(11): 114201.
[13] Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method
Li Xiang-Tao(李向涛) and Yin Ming-Hao(殷明浩) . Chin. Phys. B, 2012, 21(5): 050507.
[14] Parameter estimation for chaotic systems with and without noise using differential evolution-based method
Li Nian-Qiang (李念强), Pan Wei (潘炜), Yan Lian-Shan (闫连山), Luo Bin (罗斌), Xu Ming-Feng (徐明峰), Jiang Ning (江宁). Chin. Phys. B, 2011, 20(6): 060502.
[15] Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization
Gao Fei(高飞), Li Zhuo-Qiu(李卓球), and Tong Heng-Qing(童恒庆). Chin. Phys. B, 2008, 17(4): 1196-1201.
No Suggested Reading articles found!