Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100309    DOI: 10.1088/1674-1056/22/10/100309
GENERAL Prev   Next  

Bound entanglement and teleportation for arbitrary bipartite systems

Fan Jiao (范姣), Zhao Hui (赵慧)
College of Applied Science, Beijing University of Technology, Beijing 100124, China
Abstract  We construct bound entangled states that are entangled but from which no entanglement can be distilled if all parties are allowed only by performing local operations and classical communications. Moreover, as applications, a detailed example is presented. This example can illuminate that the fidelity of transmission using a bound entangled state is not bigger than a classical scheme.
Keywords:  bound entanglement      teleportation      partial transpose  
Received:  11 December 2012      Revised:  24 April 2013      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11101017 and 11275131) and Beijing Natural Science Foundation and Scientific Research Key Program of Beijing Municipal Commission of Education (Grant No. KZ201210028032).
Corresponding Authors:  Zhao Hui     E-mail:  zhaohui@bjut.edu.cn

Cite this article: 

Fan Jiao (范姣), Zhao Hui (赵慧) Bound entanglement and teleportation for arbitrary bipartite systems 2013 Chin. Phys. B 22 100309

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Bell J S 1964 Physics 1 195
[3] Peres A 1996 Phys. Rev. Lett. 77 1413
[4] Horodecki M and Horodecki P 1999 Phys. Rev. A 59 4206
[5] Horodecki P 1997 Phys. Lett. A 232 333
[6] Chen K and Wu L A 2003 Quantum Inf. Comput. 3 193
[7] Zhang M, Dong G H, Dai H Y and Hu D W 2006 Chin. Phys. Lett. 23 1072
[8] Tang Y L, Liu X, Zhang X W and Tang X F 2008 Acta Phys. Sin. 57 7447 (in Chinese)
[9] Xia Y J, Wang G H and Du S J 2007 Acta Phys. Sin. 56 4331 (in Chinese)
[10] Ye L and Guo G C 2002 Chin. Phys. 11 996
[11] Guo G C, Yao C M and Ye L 2001 Chin. Phys. 10 1001
[12] Cai X H 2003 Chin. Phys. 12 1066
[13] Bennett C H, DiVincenzo D, Mor T, Shor P, Smolin J and Terhal B 1999 Phys. Rev. Lett. 82 5385
[14] Breuer H P 2006 Phys. Rev. Lett. 97 080501
[15] Derkach L and Jakubczyk L 2007 Phys. Rev. A 76 042304
[16] Augusiak R, Stasinska J and Horodecki P 2008 Phys. Rev. A 77 012333
[17] Nathanson M and Ruskai M B 2007 Mathematical Systems Theory 40 8171
[18] Cavalcanti D, Ferraro A, Garcia-Saez A and Acin A 2008 Phys. Rev. A 78 012335
[19] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
[20] Horodecki M, Horodecki P and Horodecki R 1998 Phys. Rev. Lett. 80 5239
[21] Horodecki M, Horodecki P and Horodecki R 1999 Phys. Rev. A 60 1888
[22] Linden N and Popescu S 1999 Phys. Rev. A 59 137
[23] Horodecki P, Horodecki M and Horodecki R 1999 Phys. Rev. Lett. 82 1056
[24] Smolin J A 2001 Phys. Rev. A 63 032306
[25] Yeo Y, An J H and Oh C H 2010 Phys. Rev. A 82 032340
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[4] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[5] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[6] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[7] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[8] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[9] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[10] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[11] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[12] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[13] Multi-hop teleportation based on W state and EPR pairs
Hai-Tao Zhan(占海涛), Xu-Tao Yu(余旭涛), Pei-Ying Xiong(熊佩颖), Zai-Chen Zhang(张在琛). Chin. Phys. B, 2016, 25(5): 050305.
[14] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[15] Detection of the ideal resource for multiqubit teleportation
Zhao Ming-Jing (赵明镜), Chen Bin (陈斌), Fei Shao-Ming (费少明). Chin. Phys. B, 2015, 24(7): 070302.
No Suggested Reading articles found!