|
|
A geometric phase for superconducting qubits under the decoherence effect |
S. Abdel-Khaleka b, K. Berradac d e, Mohamed A. El-Sayedf, M. Abel-Atya |
a Mathematics Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt; b Mathematics Department, Faculty of Science, Taif University, Taif, Saudi Arabia; c Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Department of Physics, Riyadh, Saudi Arabia; d The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste, Italy; e Laboratoire de Physique Théorique, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, Boîte Postale 1014, Agdal Rabat, Morocco; f Informatics Department, Faculty of Science, Taif University, Taif, Saudi Arabia |
|
|
Abstract We propose a relaxation rate or dissipative cavity-based parameters that can be used as indicators of the stationary limit of a mixed state geometric phase. We perform our considerations for the system of a superconducting qubit in an open transmission line or interacting with a dissipative cavity. This system is very useful for performing an effective quantum computation by exhibiting the long collapse time of the geometric phase. It is shown that the geometric phase in the stationary limit does not depend on interaction time if the decay time exceeds an upper bound.
|
Received: 22 February 2013
Revised: 28 March 2013
Accepted manuscript online:
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.-a
|
(Quantum information)
|
|
Corresponding Authors:
K. Berrada
E-mail: kberrada@ictp.it
|
Cite this article:
S. Abdel-Khalek, K. Berrada, Mohamed A. El-Sayed, M. Abel-Aty A geometric phase for superconducting qubits under the decoherence effect 2013 Chin. Phys. B 22 100301
|
[1] |
Tomka M, Polkovnikov A and Gritsev V 2012 Phys. Rev. Lett. 108 080404
|
[2] |
Dirac P A M 1958 Principles of Quantum Mechanics (Oxford: Oxford University Press)
|
[3] |
Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111
|
[4] |
Anandan J and Stodolsky L 1987 Phys. Rev. D 35 2597
|
[5] |
Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
|
[6] |
Fujikawa K 2005 Phys. Rev. D 72 025009
|
[7] |
Fujikawa K 2005 Mod. Phys. Lett. A 20 335
|
[8] |
Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
|
[9] |
Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
|
[10] |
Recati A, Calarco T, Zanardi P, Cirac J I and Zoller P 2002 Phys. Rev. A 66 032309
|
[11] |
Yin S and Tong M D 2009 Phys. Rev. A 79 044303
|
[12] |
Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 Nature 407 355
|
[13] |
Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111
|
[14] |
Aharonov Y and Ananadan J 1987 Phys. Rev. Lett. 58 1593
|
[15] |
Ben-Aryeh Y 2004 J. Opt. B: Quantum Semiclass. Opt. 6 R1
|
[16] |
Dasgupta S and Lidar D A 2007 J. Phys. B 40 S127
|
[17] |
Bouchene M A and Abdel-Aty M 2009 Phys. Rev. A 79 055402
|
[18] |
Feng Z, Zhang Y, Wang G and Han H 2009 Physica E 41 1859
|
[19] |
Filipp S and Sjöqvist E 2003 Phys. Rev. Lett. 90 050403
|
[20] |
Ekert A, Ericsson M, Hayden P, Inamori H, Jones J A, Oi D K L and Vedral V 2000 J. Mod. Opt. 47 2501
|
[21] |
Falci G, et al. 2000 Nature 407 355
|
[22] |
Sjöqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedral V 2000 Phys. Rev. Lett. 85 2845
|
[23] |
Uhlmann A 1986 Rep. Math. Phys. 24 229
|
[24] |
Uhlmann A 1991 Lett. Math. Phys. 21 229
|
[25] |
Sjöqvist E 2000 Phys. Rev. A 62 022109
|
[26] |
Makhlin Y, Schon G and Shnirman A 1999 Nature 398 305
|
[27] |
Blais A, Huang R S,Wallraff A, Girvin S and Schoelkopf R 2004 Phys. Rev. A 69 062320
|
[28] |
El-Barakaty A, Darwish M and Obada A S F 2011 Appl. Math. Inf. Sci. 5 122
|
[29] |
Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
|
[30] |
Abdel-Aty M and Everitt M J 2010 Eur. Phys. J. B 74 81
|
[31] |
Diedrich F, Bergquist J C, Itano W M and Wineland D J 1989 Phys. Rev. Lett. 62 403
|
[32] |
Marzoli I, Cirac J I, Blatt R and Zoller P 1994 Phys. Rev. A 49 2771
|
[33] |
Abdel-Khalek S and Obada A S F 2010 Ann. Phys. 325 2542
|
[34] |
Obada A S F, Hessian H A and Mohamed A B A 2008 Laser Physics 18 1111
|
[35] |
Eleuch H 2009 Appl. Math. Inf. Sci. 3 185
|
[36] |
Puri R R and Agarwal G S 1986 Phys. Rev. A 33 3610
|
[37] |
Bohm A, Mostafazadeh A, Koizumi H, Niu Q and Zwanziger J 2003 The Geometric Phase in Quantum System (Berlin: Springer)
|
[38] |
Wolf K B 2010 Appl. Math. Inf. Sci. 4 141
|
[39] |
Tong D M, Kwek L C and Oh C H 2003 J. Phys. A: Math. Gen. 36 1149
|
[40] |
Tong D M et al. 2004 Phys. Rev. Lett. 93 080405
|
[41] |
Dajka J, Mierzejewski M and Luczka J 2008 J. Phys. A: Math. Theor. 41 012001
|
[42] |
Mooij J E, Orlando T P, Levitov L, Tian L, van der Wal C H and Lloyd S 1999 Science 285 1036
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|