Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100301    DOI: 10.1088/1674-1056/22/10/100301
GENERAL Prev   Next  

A geometric phase for superconducting qubits under the decoherence effect

S. Abdel-Khaleka b, K. Berradac d e, Mohamed A. El-Sayedf, M. Abel-Atya
a Mathematics Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt;
b Mathematics Department, Faculty of Science, Taif University, Taif, Saudi Arabia;
c Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Department of Physics, Riyadh, Saudi Arabia;
d The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste, Italy;
e Laboratoire de Physique Théorique, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, Boîte Postale 1014, Agdal Rabat, Morocco;
f Informatics Department, Faculty of Science, Taif University, Taif, Saudi Arabia
Abstract  We propose a relaxation rate or dissipative cavity-based parameters that can be used as indicators of the stationary limit of a mixed state geometric phase. We perform our considerations for the system of a superconducting qubit in an open transmission line or interacting with a dissipative cavity. This system is very useful for performing an effective quantum computation by exhibiting the long collapse time of the geometric phase. It is shown that the geometric phase in the stationary limit does not depend on interaction time if the decay time exceeds an upper bound.
Keywords:  superconducting-qubit      meometric phase      mixed state      decoherence  
Received:  22 February 2013      Revised:  28 March 2013      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.-a (Quantum information)  
Corresponding Authors:  K. Berrada     E-mail:  kberrada@ictp.it

Cite this article: 

S. Abdel-Khalek, K. Berrada, Mohamed A. El-Sayed, M. Abel-Aty A geometric phase for superconducting qubits under the decoherence effect 2013 Chin. Phys. B 22 100301

[1] Tomka M, Polkovnikov A and Gritsev V 2012 Phys. Rev. Lett. 108 080404
[2] Dirac P A M 1958 Principles of Quantum Mechanics (Oxford: Oxford University Press)
[3] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111
[4] Anandan J and Stodolsky L 1987 Phys. Rev. D 35 2597
[5] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[6] Fujikawa K 2005 Phys. Rev. D 72 025009
[7] Fujikawa K 2005 Mod. Phys. Lett. A 20 335
[8] Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
[9] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[10] Recati A, Calarco T, Zanardi P, Cirac J I and Zoller P 2002 Phys. Rev. A 66 032309
[11] Yin S and Tong M D 2009 Phys. Rev. A 79 044303
[12] Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 Nature 407 355
[13] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111
[14] Aharonov Y and Ananadan J 1987 Phys. Rev. Lett. 58 1593
[15] Ben-Aryeh Y 2004 J. Opt. B: Quantum Semiclass. Opt. 6 R1
[16] Dasgupta S and Lidar D A 2007 J. Phys. B 40 S127
[17] Bouchene M A and Abdel-Aty M 2009 Phys. Rev. A 79 055402
[18] Feng Z, Zhang Y, Wang G and Han H 2009 Physica E 41 1859
[19] Filipp S and Sjöqvist E 2003 Phys. Rev. Lett. 90 050403
[20] Ekert A, Ericsson M, Hayden P, Inamori H, Jones J A, Oi D K L and Vedral V 2000 J. Mod. Opt. 47 2501
[21] Falci G, et al. 2000 Nature 407 355
[22] Sjöqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedral V 2000 Phys. Rev. Lett. 85 2845
[23] Uhlmann A 1986 Rep. Math. Phys. 24 229
[24] Uhlmann A 1991 Lett. Math. Phys. 21 229
[25] Sjöqvist E 2000 Phys. Rev. A 62 022109
[26] Makhlin Y, Schon G and Shnirman A 1999 Nature 398 305
[27] Blais A, Huang R S,Wallraff A, Girvin S and Schoelkopf R 2004 Phys. Rev. A 69 062320
[28] El-Barakaty A, Darwish M and Obada A S F 2011 Appl. Math. Inf. Sci. 5 122
[29] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[30] Abdel-Aty M and Everitt M J 2010 Eur. Phys. J. B 74 81
[31] Diedrich F, Bergquist J C, Itano W M and Wineland D J 1989 Phys. Rev. Lett. 62 403
[32] Marzoli I, Cirac J I, Blatt R and Zoller P 1994 Phys. Rev. A 49 2771
[33] Abdel-Khalek S and Obada A S F 2010 Ann. Phys. 325 2542
[34] Obada A S F, Hessian H A and Mohamed A B A 2008 Laser Physics 18 1111
[35] Eleuch H 2009 Appl. Math. Inf. Sci. 3 185
[36] Puri R R and Agarwal G S 1986 Phys. Rev. A 33 3610
[37] Bohm A, Mostafazadeh A, Koizumi H, Niu Q and Zwanziger J 2003 The Geometric Phase in Quantum System (Berlin: Springer)
[38] Wolf K B 2010 Appl. Math. Inf. Sci. 4 141
[39] Tong D M, Kwek L C and Oh C H 2003 J. Phys. A: Math. Gen. 36 1149
[40] Tong D M et al. 2004 Phys. Rev. Lett. 93 080405
[41] Dajka J, Mierzejewski M and Luczka J 2008 J. Phys. A: Math. Theor. 41 012001
[42] Mooij J E, Orlando T P, Levitov L, Tian L, van der Wal C H and Lloyd S 1999 Science 285 1036
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[3] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[4] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[5] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[6] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[7] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[8] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[9] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[10] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[11] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[12] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[13] Decoherence of macroscopic objects from relativistic effect
Guo-Hui Dong(董国慧), Yu-Han Ma(马宇翰), Jing-Fu Chen(陈劲夫), Xin Wang(王欣), Chang-Pu Sun(孙昌璞). Chin. Phys. B, 2018, 27(10): 100301.
[14] Non-Gaussianity dynamics of two-mode squeezed number states subject to different types of noise based on cumulant theory
Shaohua Xiang(向少华), Xixiang Zhu(朱喜香), Kehui Song(宋克慧). Chin. Phys. B, 2018, 27(10): 100305.
[15] Superconducting phase qubits with shadow-evaporated Josephson junctions
Fei-Fan Su(宿非凡), Wei-Yang Liu(刘伟洋), Hui-Kai Xu(徐晖凯), Hui Deng(邓辉), Zhi-Yuan Li(李志远), Ye Tian(田野), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁), Li Lv(吕力), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2017, 26(6): 060308.
No Suggested Reading articles found!