Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 018904    DOI: 10.1088/1674-1056/22/1/018904
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Traffic resource allocation for complex networks

Ling Xiang (凌翔)a, Hu Mao-Bin (胡茂彬)b, Long Jian-Cheng (龙建成)a, Ding Jian-Xun (丁建勋)a, Shi Qin (石琴)a
a School of Transportation Engineering, Hefei University of Technology, Hefei 230009, China;
b School of Engineering Science, University of Science and Technology of China, Hefei 230026, China
Abstract  In this paper, an optimal resource allocation strategy is proposed to enhance traffic dynamics in complex networks. The network resources are the total node packet-delivering capacity and the total link bandwidth. An analytical method is developed to estimate the overall network capacity by using the concept of efficient betweenness (ratio of algorithmic betweenness and local processing capacity). Three network structures (scale-free, small-world, and random networks) and two typical routing protocols (shortest path protocol and efficient routing protocol) are adopted to demonstrate the performance of the proposed strategy. Our results show that the network capacity is reversely proportional to the average path length for a particular routing protocol and the shortest path protocol can achieve the largest network capacity when the proposed resource allocation strategy is adopted.
Keywords:  complex network      shortest path protocol      efficient routing protocol      resource allocation strategy  
Received:  12 May 2012      Revised:  04 July 2012      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.70.Fh (Phase transitions: general studies)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB725404), the National Natural Science Foundation of China ( Grant Nos. 71071044, 71171185, 71201041, and 71271075), and the Doctoral Program of the Ministry of Education, China ( Grant No. 20110111120023).
Corresponding Authors:  Ding Jian-Xun     E-mail:  dingjianxun@hfut.edu.cn

Cite this article: 

Ling Xiang (凌翔), Hu Mao-Bin (胡茂彬), Long Jian-Cheng (龙建成), Ding Jian-Xun (丁建勋), Shi Qin (石琴) Traffic resource allocation for complex networks 2013 Chin. Phys. B 22 018904

[1] Watts D J and Strogaz S H 1998 Nature 393 440
[2] Barabási A L and Albert R 1999 Science 286 509
[3] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[4] Newman M E J 2001 Phys. Rev. E 64 016132
[5] Newman M E J 2003 SIAM Rev. 45 167
[6] Boccaletti S, Latora V and Moreno Y 2006 Phys. Rep. 424 175
[7] Arenas A, Díaz-Guilera A D and Guimerá R 2001 Phys. Rev. Lett. 86 3196
[8] Martino D D, DallAsta L, Bianconi G and Marsili M 2009 Phys. Rev. E 79 015101(R)
[9] Wang Y Q and Jiang G P 2010 Acta Phys. Sin. 59 6725 (in Chinese)
[10] Song Y R and Jiang G P 2010 Acta Phys. Sin. 59 7546 (in Chinese)
[11] Menezes M A and Barabási A L 2004 Phys. Rev. Lett. 92 028701
[12] Duch J and Arenas A 2006 Phys. Rev. Lett. 96 218702
[13] Holme P and Kim B J 2002 Phys. Rev. E 65 066109
[14] Guimerá R, Díaz-Guilera A, Vega-Redondo F, Cabrales A and Arenas A 2002 Phys. Rev. Lett. 89 248701
[15] Kim B J, Yoon C N, Han S K and Jeong H 2002 Phys. Rev. E 65 027103
[16] Tadić B, Thurner S and Rodgers G J 2004 Phys. Rev. E 69 036102
[17] Wang W X, Wang B H, Yin C Y, Xie Y B and Zhou T 2006 Phys. Rev. E 73 026111
[18] Yan G, Zhou T, Hu B, Fu Z Q and Wang B H 2006 Phys. Rev. E 73 046108
[19] Ling X, Hu M B, Jiang R, Wang R L, Cao X B and Wu Q S 2009 Phys. Rev. E 80 066110
[20] Shen Y, Pei W J, Wang K and Wang S P 2009 Chin. Phys. B 18 3783
[21] Liu F, Zhao H, Li M, Ren F Y and Zhu Y B 2010 Chin. Phys. B 19 040513
[22] Yang H X, Wang W X, Wu Z X and Wang B H 2008 Physica A 387 6857
[23] Gong X F, Kun L and Lai C H 2008 Europhys. Lett. 83 28001
[24] Shen B and Gao Z Y 2008 Physica A 2008 387 1352
[25] Xia Y X and Hill D 2010 Europhys. Lett. 89 58004
[26] Newman M E J and Watts D J 1999 Phys. Rev. E 60 7332
[27] Erdös P and Rényi A 1959 Publ. Math. Debrecen 6 290
[28] Goh K I, Kahng B and Kim D 2001 Phys. Rev. Lett. 87 278701
[29] Meloni S, Arenas A and Moreno Y 2009 PNAS 106 16897
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[7] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[10] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[11] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[14] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[15] Manufacturing enterprise collaboration network: An empirical research and evolutionary model
Ji-Wei Hu(胡辑伟), Song Gao(高松), Jun-Wei Yan(严俊伟), Ping Lou(娄平), Yong Yin(尹勇). Chin. Phys. B, 2020, 29(8): 088901.
No Suggested Reading articles found!