Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 014211    DOI: 10.1088/1674-1056/22/1/014211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Beam evolutions of solitons in strongly nonlocal media with fading optical lattices

Dai Zhi-Ping (戴志平), Lu Shi-Zhuan (陆世专), You Kai-Ming (游开明)
Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008, China
Abstract  We address the impact of imprinted fading optical lattices on the beam evolutions of solitons in strongly nonlocal nonlinear media. The results show that the width of soliton experiences a change with the increasing propagation distance, the critical power for the soliton varies with the lattice fading away, and the soliton breathing is affected by the initial lattice depth and the nonlocality degree.
Keywords:  strong nonlocality      optical lattice      optical soliton  
Received:  16 June 2012      Revised:  13 August 2012      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
Fund: Project supported by the Doctorial Start-up Fund of Hengyang Normal University, China (Grant No. 11B42), the Natural Science Foundation of Hunan Province, China (Grant No. 12JJ6001), and the Construct Program of the Key Discipline in Hunan Province, China.
Corresponding Authors:  Dai Zhi-Ping     E-mail:  daizhi169@163.com

Cite this article: 

Dai Zhi-Ping (戴志平), Lu Shi-Zhuan (陆世专), You Kai-Ming (游开明) Beam evolutions of solitons in strongly nonlocal media with fading optical lattices 2013 Chin. Phys. B 22 014211

[1] Vicencio R A, Molina M I and Kivshar Y S 2003 Opt. Lett. 28 1942
[2] Vicencio R A, Molina M I and Kivshar Y S 2004 Phys. Rev. E 70 026602
[3] Kartashov Y V, Zelenina A S, Torner L and Vysloukh V A 2004 Opt. Lett. 29 766
[4] Dong L W, Yang X Y and Chen H Y 2008 Chin. Phys. B 17 988
[5] Xu S L, Liang J C and Li Z M 2011 Chin. Phys. B 20 114214
[6] Meng Y J, Liu Y W and Tang Y H 2012 Chin. Phys. B 21 074206
[7] Ablowitz M J and Musslimani Z H 2001 Phys. Rev. Lett. 87 254102
[8] Pertsch T, Peschel U and Lederer F 2003 Chaos 13 744
[9] Kartashov Y V, Torner L and Vysloukh V A 2004 Opt. Lett. 29 1102
[10] Staliunas K and Herrero R 2006 Phys. Rev. E 73 016601
[11] Królikowski W, Bang O, Rasmussen J J and Wyller J 2001 Phys. Rev. E 64 016612
[12] Bang O, Królikowski W, Wyller J and Rasmussen J J 2002 Phys. Rev. E 66 046619
[13] Królikowski W, Bang O, Nikolov N I, Neshev D, Wyller J, Rasmussen J J and Edmundson D 2004 J. Opt. B: Quantum Semiclass Opt. 6 S288
[14] Fratalocchi A and Assanto G 2005 Phys. Rev. E 72 066608
[15] Fratalocchi A, Assanto G, Brzdakiewicz K A and Karpierz M A 2005 Appl. Phys. Lett. 86 051112
[16] Morandotti R, Peschel U, Aitchison J S, Eisenberg H S and Silberberg Y 1999 Phys. Rev. Lett. 83 2726
[17] Xu Z, Kartashov Y V and Torner L 2005 Phys. Rev. Lett. 95 113901
[18] Dai Z, Wang Y and Guo Q 2008 Phys. Rev. A 77 063834
[19] Guo Q, Luo B, Yi F, Chi S and Xie Y 2004 Phys. Rev. E 69 016602
[20] Kartashov Y V, Vysloukh V A and Torner L 2006 Opt. Lett. 31 2181
[21] Fleischer J W, Carmon T, Segev M, Efremidis N K and Christodoulides D N 2003 Phys. Rev. Lett. 90 023902
[22] Yang R and Wu X 2008 Opt. Express. 16 17759
[23] Zhang P, Efremidis N K, Miller A, Hu Y and Chen Z 2010 Opt. Lett. 35 3252
[24] Bergstrom R W, Russell P B and Hignett P 2002 J. Atmos. Sci. 59 567
[25] Anderson D 1983 Phys. Rev. A 27 3135
[26] Agrawal G P 2007 Nonlinear Fiber Optics (4th edn.) (San Diego: Academic) pp. 41-45
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[3] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[4] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[5] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[6] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[7] Constructing the three-qudit unextendible product bases with strong nonlocality
Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Chin. Phys. B, 2022, 31(6): 060302.
[8] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[9] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[10] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[11] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[12] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[13] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[14] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[15] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
No Suggested Reading articles found!