Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 013205    DOI: 10.1088/1674-1056/22/1/013205
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electron flux distributions in photodetachment of HF- near an interface: theoretical imaging method study

Maryam Nawaz Awan, A. Afaq
Centre of Excellence in Solid State Physics, University of the Punjab Lahore-54590, Pakistan
Abstract  The electron flux distributions in the photodetachment of HF- near an interface are studied using a two-center model and the theoretical imaging method. An analytical expression for electron flux distributions is derived, which displays oscillations on an observation plane similar to the recent results published by Wang but in the presence of a static electric field. We also discuss the expressions for soft and hard wall cases in detail. A comparison is made with the previous work. The expression is a more general result, and we can deduce from it the electron flux distributions for the photodetachment of H2- near an interface. Finally, we show that the expression reveals similar results as those in [Chin. Phys. B 19 020306 (2010)] when the wall effect is neglected.
Keywords:  negative ions      two-center model      electron flux      quantum interference  
Received:  11 May 2012      Revised:  02 July 2012      Accepted manuscript online: 
PACS:  32.80.Gc (Photodetachment of atomic negative ions)  
  03.65.Sq (Semiclassical theories and applications)  
Corresponding Authors:  A. Afaq     E-mail:  aafaq.cssp@pu.edu.pk

Cite this article: 

Maryam Nawaz Awan, A. Afaq Electron flux distributions in photodetachment of HF- near an interface: theoretical imaging method study 2013 Chin. Phys. B 22 013205

[1] Bryant H C, Mohagheghi A and Stewart J E 1987 Phys. Rev. Lett. 58 2412
[2] Fabrikant I 1980 Sov. Phys. JETP 52 1045
[3] Rau A R P and Wong H 1988 Phys. Rev. A 37 632
[4] Du M L and Delos J B 1988 Phys. Rev. A 38 5609
[5] Du M L 1989 Phys. Rev. A 40 4983
[6] Blondel C et al. 2001 J. Phys. B 34 L281
[7] Blondel C et al. 2001 Phys. Rev. A 64 052504
[8] Yang G, Zheng Y and Chi X 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1855
[9] Afaq A and Du M L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1309
[10] Wang D H, Ma X G, Wang M S and Yang C L 2006 Chin. Phys. 16 1307
[11] Wang D H 2006 Chin. Phys. Lett. 24 400
[12] Wang D H, Yongjiang Y and Hongrun W 2009 Chin. Optics. Lett. 7 176
[13] Wang D H and Huang K Y 2010 Commu. Theor. Phys. 53 898
[14] Huang K Y and Wang D H 2010 J. Chem. Phys. 114 8958
[15] Wang D H, Wang S S and Tang T T 2011 J. Phys. Soc. Jpn. 80 094301
[16] Wang D H 2011 Current Applied Physics 1 1228
[17] Wang D H and Huang K Y 2011 J. Appl. Phys. 109 014113
[18] Wang D H 2010 Chin. Phys. B 19 020306
[19] Wang D H 2008 Chin. Phys. Lett. 25 919
[20] Afaq A and Du M L 2009 J. Phys. B: At. Mol. Opt. Phys. 42 105101
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[4] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[5] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[10] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[13] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[14] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[15] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
No Suggested Reading articles found!