Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 013204    DOI: 10.1088/1674-1056/22/1/013204
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Exact quantum defect theory approach for lithium in magnetic fields

Xu Jia-Kun (徐家坤)a b, Chen Hai-Qing (陈海清)a, Liu Hong-Ping (刘红平)c
a College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
b School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430073, China;
c State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  We calculate the diamagnetic spectrum of lithium at highly excited states up to the positive energy range using the exact quantum defect theory approach. The concerned excitation is one-photon transition from the ground state 2s to the highly excited states np with π and σ polarizations respectively. Lithium has a small quantum defect value 0.05 for the np states, and its diamagnetic spectrum is very similar to that of hydrogen in the energy range approaching the ionization limit. However, a careful calculation shows that the spectrum has a significant discrepancy with that of hydrogen when the energy is lower than -70 cm-1. The effect of the quantum defect is also discussed for the Stark spectrum. It is found that the σ transition to the np states in an electric field has a similar hydrogen behavior due to the zero interaction with channel ns.
Keywords:  diamagnetic spectrum      quantum defect theory  
Received:  11 May 2012      Revised:  27 May 2012      Accepted manuscript online: 
PACS:  32.60.+i (Zeeman and Stark effects)  
  32.30.Jc (Visible and ultraviolet spectra)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174329 and 91121005) and the National Basic Research Program of China (Grant No. 2013CB922003).
Corresponding Authors:  Liu Hong-Ping     E-mail:  liuhongping@wipm.ac.cn

Cite this article: 

Xu Jia-Kun (徐家坤), Chen Hai-Qing (陈海清), Liu Hong-Ping (刘红平) Exact quantum defect theory approach for lithium in magnetic fields 2013 Chin. Phys. B 22 013204

[1] Courtney M and Kleppner D 1996 Phys. Rev. A 53 178
[2] Delande D 1991 Phys. Scripta T34 52
[3] Monteiro T S and Wunner G 1990 Phys. Rev. Lett. 65 1100
[4] Delande D and Gay J C 1986 Phys. Rev. Lett. 57 2006
[5] Bouloufa N, Cacciani P, Delande D, Delsart C, Gay J C, Luc-Koenig E and Pinard J 1995 J. Phys. B 28 L755
[6] Courtney M, Spellmeyer N, Jiao H and Kleppner D 1995 Phys. Rev. A 51 3604
[7] Lu K T, Tomkins F S, Crosswhite H M and Crosswhite H 1978 Phys. Rev. Lett. 41 1034
[8] Cacciani P, Luc-Koenig E, Pinard J, Thomas C and Liberman S 1986 Phys. Rev. Lett. 56 1467
[9] Goy P, Liang J, Gross M and Haroche S 1986 Phys. Rev. A 34 2889
[10] Cacciani P, Liberman S, Luc-Koenig E, Pinard J and Thomas C 1988 J. Phys. B 21 3523
[11] Cacciani P, Liberman S, Luc-Koenig E, Pinard J and Thomas C 1988 J. Phys. B 21 3473
[12] Cacciani P, Liberman S, Luc-Koenig E, Pinard J and Thomas C 1989 Phys. Rev. A 40 3026
[13] Guan X X and Li B W 2001 Phys. Rev. A 63 043413
[14] Liu S L, Zhang Q J, Zhao K, Song X H and Zhang Y H 2002 Chin. Phys. Lett. 19 29
[15] Al-Hujaj O A and Schmelcher P 2004 Phys. Rev. A 70 033411
[16] Starace A F 1973 J. Phys. B 6 585
[17] Garton W R S and Tomkins F S 1969 Astro. Phys. J. 158 1219
[18] Iu C h, Welch G, Kash M, Hsu L and Kleppner D 1989 Phys. Rev. Lett. 63 1133
[19] O'Mahony P F and Mota-Furtado F 1991 Phys. Rev. Lett. 67 2283
[20] Watanabe S and Komine H 1991 Phys. Rev. Lett. 67 3227
[21] Edmonds A R 1973 J. Phys. B 6 1603
[22] Garstang R H and Kemic S B 1974 Astrophys. Space Sci. 31 103
[23] Li Y 2007 Theor. Chem. Acc. 117 163
[24] Halley M H, Delande D and Taylor K T 1993 J. Phys. B 26 1775
[25] Martin I, Karwowski J, Lavin C and Diercksen G H F 1991 Phys. Scripta 44 567
[26] Martint I and Karwowski J 1991 J. Phys. B 24 1539
[27] Menéndez J M, Martín I and Velasco A M 2003 J. Chem. Phys. 119 12926
[28] Yang H F, Gao W, Quan W, Liu X J and Liu H P 2012 Phys. Rev. A 85 032508
[29] Bachau H, Cormier E, Decleva P, Hansen J E and Martin F 2001 Rep. Prog. Phys. 64 1815
[30] Shen L, Wang L, Liu X J, Shi T Y and Liu H P 2008 Chin. Phys. Lett. 25 1255
[31] Cacciani P, Luc-Koenig E, Pinard J, Thomas C and Liberman S 1986 Phys. Rev. Lett. 56 1124
[32] Goy P, Liang J, Gross M and Haroche S 1986 Phys. Rev. A 34 2889
[33] Halley M H, Delande D and Taylor K T 1992 J. Phys. B 25 L525
[34] Iu C H, Welch G R, Kash M M, Kleppner D, Delande D and Gay J C 1991 Phys. Rev. Lett. 66 145
[1] Spectral decomposition at complex laser polarization configuration
Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Hong-Ping (刘红平). Chin. Phys. B, 2013, 22(5): 053201.
[2] An effective quantum defect theory for the diamagnetic spectrum of barium Rydberg atom
Li Bo (李波), Liu Hong-Ping (刘红平). Chin. Phys. B, 2013, 22(1): 013203.
[3] Theoretical study on 2s2p6np Rydberg states of Cu19+ ion
Zhang Zheng-Rong(张正荣), Cheng Xin-Lu(程新路), Liu Zi-Jiang(刘子江), Yang Jian-Hui(杨建会), and Li Hui-Fang(李慧芳) . Chin. Phys. B, 2012, 21(1): 013101.
[4] Energy levels of 1s2nd (n ≤ 9) states for lithium-like ions
Hu Mu-Hong(胡木宏), Wang Zhi-Wen(王治文), Zeng Fan-Wei(曾凡伟), Wang Tao(王涛), and Wang Jing(王晶). Chin. Phys. B, 2011, 20(8): 083101.
[5] Energy level analyses of even-parity J = 1 and 2 Rydberg states of Sn I by multichannel quantum defect theory
You Shuai(由帅), Feng Yan-Yan(凤艳艳), and Dai Zhen-Wen(戴振文). Chin. Phys. B, 2009, 18(6): 2229-2237.
[6] Theoretical analysis of ionic autoionization spectra of lanthanum via an intermediate state [Xe]5d6d 1P1
Zhong Yin-Peng(仲银鹏), Jia Feng-Dong(贾凤东), and Zhong Zhi-Ping(钟志萍). Chin. Phys. B, 2009, 18(10): 4242-4250.
[7] Relativistic multichannel treatment of autoionization Rydberg series of 4s2 nf(n=4--23)J$\pi$=(7/2)0 for scandium
Jia Feng-Dong(贾凤东), Wang Jing-Yang(王京阳), and Zhong Zhi-Ping(钟志萍). Chin. Phys. B, 2008, 17(6): 2027-2032.
[8] Resonance calculations of d-f intervals for the lithium Rydberg states
Chen Chao (陈超), Wang Zhi-Wen (王治文). Chin. Phys. B, 2005, 14(3): 505-510.
[9] Radiative lifetimes of Rydberg 6pnd J=2 states of Pb I by multichannel quantum defect theory
Dai Zhen-Wen (戴振文), Jiang Hong-Mei (蒋红玫), Sun Gui-Juan (孙桂娟), Jiang Zhan-Kui (蒋占魁). Chin. Phys. B, 2004, 13(6): 845-849.
No Suggested Reading articles found!