Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010302    DOI: 10.1088/1674-1056/22/1/010302
GENERAL Prev   Next  

Dirac equation for the Hulthén potential within the Yukawa-type tensor interaction

Oktay Aydoğdua, Elham Maghsoodib, Hassan Hassanabadib
a Department of Physics, Mersin University, Mersin 33343, Turkey;
b Department of Physics, Shahrood University of Technology, Shahrood, Iran
Abstract  Using the Nikiforov-Uvarov (NU) method, pseudospin and spin symmetric solutions of the Dirac equation for the scalar and vector Hulthén potentials with the Yukawa-type tensor potential are obtained for an arbitrary spin-orbit coupling quantum number κ. We deduce the energy eigenvalue equations and corresponding upper- and lower-spinor wave functions in both the pseudospin and spin symmetry cases. Numerical results of the energy eigenvalue equations and the upper- and lower-spinor wave functions are presented to show the effects of the external potential and particle mass parameters as well as pseudospin and spin symmetric constants on the bound-state energies and wave functions in the absence and presence of the tensor interaction.
Keywords:  Dirac equation      Hulthén potential and Yukawa potential      pseudospin and spin symmetry      tensor interaction  
Received:  01 June 2012      Revised:  24 July 2012      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
  02.30.Gp (Special functions)  
  21.60.Cs (Shell model)  
Corresponding Authors:  Oktay Aydoğdu     E-mail:  oktaydogdu@gmail.com

Cite this article: 

Oktay Aydoğdu, Elham Maghsoodi, Hassan Hassanabadi Dirac equation for the Hulthén potential within the Yukawa-type tensor interaction 2013 Chin. Phys. B 22 010302

[1] Hecht K T and Adler A 1969 Nucl. Phys. A 137 129
[2] Arima A, Harvey M and Shimizu K 1969 Phys. Lett. B 30 517
[3] Troltenier D, Bahri C and Draayer J P 1995 Nucl. Phys. A 586 53
[4] Bohr A, Hamamoto I and Mottelson B R 1982 Phys. Scr. 26 267
[5] Dudek J, Nazarewicz W, Szymanski Z and Leander G A 1987 Phys. Rev. Lett. 59 1405
[6] Troltenier D, Nazarewicz W, Szymanski Z and Draayer J P 1994 Nucl. Phys. A 567 591
[7] Stuchbery A E 1999 J. Phys. G. 25 611
[8] Stuchbery A E 2002 Nucl. Phys. A 700 83
[9] Nazarewicz W, Twin P J, Fallon P and Garrett J D 1990 Phys. Rev. Lett. 64 1654
[10] Stephens F S, Deleplanque M A, Draper J E, Diamond R M, Macchiavelli A O, Beausang C W, Korten W, Kelly W H and Azaiez F 1990 Phys. Rev. Lett. 65 301
[11] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[12] Ginocchio J N and Leviatan A 1998 Phys. Lett. B 245 1
[13] Ginocchio J N 2004 Phys. Rev. C 69 034318
[14] Ginocchio J N 2005 Phys. Rep. 414 165
[15] Page P R, Goldman T and Ginocchio J N 2001 Phys. Rev. Lett. 86 204
[16] Xu Y, He S and Jia C S 2008 J. Phys. A: Math. Theor. 41 255302
[17] Berkdemir C 2006 Nucl. Phys. A 770 32
[18] Zhang L H, Li X P and Jia C S 2008 Phys. Lett. A 372 2201
[19] Soylu A, Bayrak O and Boztosun I 2007 J. Math. Phys. 48 082302
[20] Berkdemir C and Sever R 2008 J. Phys. A: Math. Theor. 41 045302
[21] Qiang W C, Zhou R S and Gao Y 2007 J. Phys. A: Math. Theor. 40 1677
[22] Alhaidari A D, Bahlouli H and Al-Hasan A 2006 Phys. Lett. A 349 87
[23] Guo J Y, Han J C and Wang R D 2006 Phys. Lett. A 353 378
[24] Jia C S, Guo P and Peng X L 2006 J. Phys. A: Math. Gen. 39 7737
[25] Wei G F and Dong S H 2008 Phys. Lett. A 373 49
[26] ALberto P, Fiolhais M, Malheiro M, Delfino A and Chiapparini M 2002 Phys. Rev. C 65 034307
[27] Chen T S, Lü H F, Meng J, Zhang S Q and Zhou S G 2003 Chin. Phys. Lett. 20 358
[28] Xu Q and Zhu S J 2006 Nucl. Phys. A 768 161
[29] Zhou S G, Meng J and Ring P 2003 Phys. Rev. Lett. 91 262501
[30] He X T, Zhou S G, Meng J, Zhao E G and Scheid W 2006 Eur. Phys. J. A 28 265
[31] Taskin F and Kocak G 2011 Chin. Phys. B 20 070302
[32] Aydogdu O and Sever R 2010 Ann. Phys. 325 373
[33] Zarrinkamar S, Rajabi A A and Hassanabadi H 2010 Ann. Phys. 325 2522
[34] Zarrinkamar S, Rajabi A A and Hassanabadi H 2010 Ann. Phys. 325 1720
[35] Zarrinkamar S, Rajabi A A and Hassanabadi H 2011 Phys. Scr. 83 015009
[36] Zhou Y and Guo J Y 2008 Chin. Phys. B 17 380
[37] Chen W L and Wei G F 2011 Chin. Phys. B 20 062101
[38] Lisboa R, Malheiro M, de Castro A S, Alberto P and Fiolhais M 2004 Phys. Rev. C 69 024319
[39] Alberto P, Lisboa R, Malheiro M and de Castro A S 2005 Phys. Rev. C 71 034313
[40] Akcay H 2009 Phys. Lett. A 373 616
[41] Akcay H and Tezcan C 2009 Int. J. Mod. Phys. C 20 931
[42] Aydogdu O and Sever R 2011 Phys. Lett. B 703 379
[43] Aydogdu O and Sever R 2010 Eur. Phys. J. A 43 73
[44] Aydogdu O and Sever R 2010 Few-Body Syst. 47 193
[45] Hassanabadi H, Maghsoodi E, Zarrinkamar S and Rahimov H 2012 J. Math. Phys. 53 022104
[46] Hassanabadi H, Maghsoodi E, Zarrinkamar S and Rahimov H 2011 Mod. Phys. Lett. A 26 2703
[47] Hassanabadi H, Maghsoodi E and Zarrinkamar S 2012 Eur. Phys. J. Plus. 127 31
[48] Maghsoodi E, Hassanabadi E and Zarrinkamar S 2012 Few-Body Syst. 53 525
[49] Eshghi M and Mehraban H 2011 J. Sci. Res. 3 239
[50] Maghsoodi E, Hassanabadi E, Zarrinkamar S and Rahimov H 2012 Phys. Scr. 85 055007
[51] Hulthén L 1942 Ark. Mat. Astron. Fys. 28A 5
[52] Yukawa H 1935 Proc. Phys. Math. Soc. Jpn. 17 48
[53] Yukawa H and Sakata S 1937 Proc. Phys. Math. Soc. Jpn. 19 1084
[54] Luo X Q, Li Y Y and Kröger H 2006 Sci. China Ser. G 49 60
[55] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser)
[56] Ikhdair S M 2010 J. Math. Phys. 51 023525
[57] Chari M V K and Salon S J 1999 Numerical Methods in Electromagnetism (Academic Press)
[58] available at www.netlib.org
[59] available at ftp://ftp.caam.rice.edu/pub/software/ARPACK
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[3] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[4] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[5] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[6] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[7] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[8] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[9] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[10] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[11] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[12] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[13] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[14] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[15] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
No Suggested Reading articles found!