Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 077502    DOI: 10.1088/1674-1056/21/7/077502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exchange coupling and helical spin order in the triangular lattice antiferromagnet CuCrO2 using first principles

Jiang Xue-Fan(江学范)a)†, Liu Xian-Feng(刘先锋)b), Wu Yin-Zhong(吴银忠)a), and Han Jiu-Rong(韩玖荣)b)
a Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, China;
b College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
Abstract  The magnetic and the electronic properties of the geometrically frustrated triangular antiferromagnet CuCrO2 are investigated by first-principles through density functional theory calculations within generalized gradient approximations (GGA)+U scheme. The spin exchange interactions up to the third nearest neighbours in the ab plane as well as the coupling between adjacent layers are calculated to examine the magnetism and the spin frustration. It is found that CuCrO2 has a natural two-dimensional characteristic of the magnetic interaction. Using Monte--Carlo simulation, we obtain the N閑l temperature to be 29.9 K, which accords well with the experimental value 24 K. Based on the non-collinear magnetic structure calculations, we verify that the incommensurate spiral-spin structure with (110) spiral plane is believable for the magnetic ground state, which is consistent with the experimental observations. Due to the intra-layer geometric spin frustration, parallel helical-spin chains arise along the a, b, or a+b directions each with a screw-rotation angle of about 120?. Our calculations of the density of states show that the spin frustration plays an important role in the change of d--p hybridization, while the spin-orbit coupling has very limited influence on the electronic structure.
Keywords:  magnetically ordered materials      multiferroic      spin frustration      spin orbit effects  
Received:  05 November 2011      Revised:  03 December 2011      Accepted manuscript online: 
PACS:  75.25.-j (Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))  
  75.50.Ee (Antiferromagnetics)  
  71.15.-m (Methods of electronic structure calculations)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874021).
Corresponding Authors:  Jiang Xue-Fan     E-mail:  xfjiang@cslg.edu.cn

Cite this article: 

Jiang Xue-Fan(江学范), Liu Xian-Feng(刘先锋), Wu Yin-Zhong(吴银忠), and Han Jiu-Rong(韩玖荣) Exchange coupling and helical spin order in the triangular lattice antiferromagnet CuCrO2 using first principles 2012 Chin. Phys. B 21 077502

[1] Collins M F and Petrenko O A 1997 Can. J. Phys. 75 605
[2] Ye F, Fernandez-Baca J A, Fishman R S, Ren Y, Kang H J, Oiu Y and Kimura T 2007 Phys. Rev. Lett. 99 157201
[3] Hemmida M, Krug von Nidda H-A, B黷tgen N, Loidl A, Alexander L K, Nath R, Mahajan A V, Berger R F, Cava R J, Singh Y and Johnston D C 2009 Phys. Rev. B 80 054406
[4] Arnold T, Payne D J, Bourlange A, Hu J P, Egdell R G, Piper L F J, Colakerol L, De Masi A, Glans P-A, Learmonth T, Smith K E, Guo J, Scanlon D O, Walsh A, Morgan B J and Watson G W 2009 Phys. Rev. B 79 075102
[5] Seki S, Onose Y and Tokura Y 2008 Phys. Rev. Lett. 101 067204
[6] Kimura K, Nakamura H, Kimura S, Hagiwara M and Kimura T 2009 Phys. Rev. Lett. 103 107201
[7] Scanlon D O and Watson G W 2011 J. Mater. Chem. 21 3655
[8] Poienar M, Damay F and Martin C 2010 Phys. Rev. B 81 104411
[9] Kadowaki H, Kikuchi H and Ajiro Y 1990 J. Phys.: Condens. Matter 2 4485
[10] Poienar M, Damay F, Martin C, Hardy V, Maignan A and Andr? G 2009 Phys. Rev. B 79 014412
[11] Soda M, Kimura K, Kimura T, Matsuura M and Hirota K 2009 J. Phys. Soc. Jpn. 78 124703
[12] Kimura K, Nakamura H, Ohgushi K and Kimura T 2008 Phys. Rev. B 78 140401 (R)
[13] Sergienko I A and Dagotto E 2006 Phys. Rev. B 73 094434
[14] Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
[15] Arima T 2007 J. Phys. Soc. Jpn. 76 073702
[16] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[17] Kresse G and Furthm黮ler J 1996 Phys. Rev. B 54 11169
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Kan E J, Xiang H J, Zhang Y, Lee C and Whangbo M-H 2009 Phys. Rev. B 80 104417
[20] Mazin I I 2007 Phys. Rev. B 75 094407
[21] Zagoulaev S and Tupitsyn I I 1997 Phys. Rev. B 55 13528
[22] Maignan A, Martin C, Fr閟ard R, Eyert V, Guilmeau E, H閎ert S, Poienar M and Pelloquin D 2009 Solid State Commun. 149 962
[23] Capriotti L, Cuccoli A, Tognetti V and Vaia R 1999 J. Appl. Phys. 85 6073; Capriotti L, Vaia R, Cuccoli A and Tognetti V 1998 Phys. Rev. B 58 273
[24] Kimura K, Otani T, Nakamura H, Wakabayashi Y and Kimura T 2009 J. Phys. Soc. Jpn. 78 113710
[1] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[2] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[3] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[4] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[5] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[6] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[7] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[8] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[9] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[10] Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Qi Pan(潘祺), Bao-Jin Chu(初宝进). Chin. Phys. B, 2020, 29(8): 087501.
[11] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[12] Structures and local ferroelectric polarization switching properties of orthorhombic YFeO3 thin film prepared by a sol-gel method
Runlan Zhang(张润兰), Shuaishuai Li(李帅帅), Changle Chen(陈长乐), Li-An Han(韩立安), Shanxin Xiong(熊善新). Chin. Phys. B, 2019, 28(3): 037701.
[13] Unusual tunability of multiferroicity in GdMn2O5 by electric field poling far above multiferroic ordering point
Xiang Li(李翔), Shuhan Zheng(郑书翰), Liman Tian(田礼漫), Rui Shi(石锐), Meifeng Liu(刘美风), Yunlong Xie(谢云龙), Lun Yang(杨伦), Nian Zhao(赵念), Lin Lin(林林), Zhibo Yan(颜志波), Xiuzhang Wang(王秀章), Junming Liu(刘俊明). Chin. Phys. B, 2019, 28(2): 027502.
[14] Enhanced magneto-electric effect in manganite tricolor superlattice with artificially broken symmetry
Huanyu Pei(裴环宇), Shujin Guo(郭蜀晋), Hong Yan(闫虹), Changle Chen(陈长乐), Bingcheng Luo(罗炳成), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(9): 097701.
[15] Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22
Fen Wang(王芬), Shi-Peng Shen(申世鹏), Young Sun(孙阳). Chin. Phys. B, 2016, 25(8): 087503.
No Suggested Reading articles found!