Special Issue:
Virtual Special Topic — Magnetism and Magnetic Materials
|
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Unusual tunability of multiferroicity in GdMn2O5 by electric field poling far above multiferroic ordering point |
Xiang Li(李翔)1,2, Shuhan Zheng(郑书翰)2, Liman Tian(田礼漫)1, Rui Shi(石锐)1, Meifeng Liu(刘美风)1, Yunlong Xie(谢云龙)1, Lun Yang(杨伦)1, Nian Zhao(赵念)1, Lin Lin(林林)2, Zhibo Yan(颜志波)2, Xiuzhang Wang(王秀章)1, Junming Liu(刘俊明)1,2,3 |
1 Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China;
2 Laboratory of Solid State Microstructures and Innovative Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
3 Institute for Advanced Materials, South China Normal University, Guangzhou 510006, China |
|
|
Abstract The multiferroicity in the RMn2O5 family remains unclear, and less attention has been paid to its dependence on high-temperature (high-T) polarized configuration. Moreover, no consensus on the high-T space group symmetry has been reached so far. In view of this consideration, one may argue that the multiferroicity of RMn2O5 in the low-T range depends on the poling sequence starting far above the multiferroic ordering temperature. In this work, we investigate in detail the variation of magnetically induced electric polarization in GdMn2O5 and its dependence on electric field poling routine in the high-T range. It is revealed that the multiferroicity does exhibit qualitatively different behaviors if the high-T poling routine changes, indicating the close correlation with the possible high-T polarized state. These emergent phenomena may be qualitatively explained by the co-existence of two low-T polarization components, a scenario that was proposed earlier. One is the component associated with the Mn3+-Mn4+-Mn3+ exchange striction that seems to be tightly clamped by the high-T polarized state, and the other is the component associated with the Gd3+-Mn4+-Gd3+ exchange striction that is free of the clamping. The present findings may offer a different scheme for the electric control of the multiferroicity in RMn2O5.
|
Received: 06 September 2018
Revised: 28 November 2018
Accepted manuscript online:
|
PACS:
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804088, 11234005, 11374147, 51431006, and 11704109), the National Key Research Program of China (Grant No. 2016YFA0300101), and the Research Project of Hubei Provincial Department of Education, China (Grant No. B2018146). |
Corresponding Authors:
Xiang Li
E-mail: lixplus@126.com
|
Cite this article:
Xiang Li(李翔), Shuhan Zheng(郑书翰), Liman Tian(田礼漫), Rui Shi(石锐), Meifeng Liu(刘美风), Yunlong Xie(谢云龙), Lun Yang(杨伦), Nian Zhao(赵念), Lin Lin(林林), Zhibo Yan(颜志波), Xiuzhang Wang(王秀章), Junming Liu(刘俊明) Unusual tunability of multiferroicity in GdMn2O5 by electric field poling far above multiferroic ordering point 2019 Chin. Phys. B 28 027502
|
[1] |
Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
|
[2] |
Khomskii D 2009 Physics 2 20
|
[3] |
Dong S, Yu R, Yunoki S, Liu J M and Dagotto E 2008 Phys. Rev. B 78 155121
|
[4] |
Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
|
[5] |
Jia C, Onoda S, Nagaosa N and Han J H 2006 Phys. Rev. B 74 224444
|
[6] |
Mochizuki M, Furukawa N and Nagaosa N 2011 Phys. Rev. B 84 144409
|
[7] |
Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123
|
[8] |
Wang K F, Liu J M and Ren Z F 2009 Adv. Phys. 58 321
|
[9] |
Kimura T 2007 Ann. Rev. Mater. Res. 37 387
|
[10] |
Xu K, Lu X Z and Xiang H 2017 Npj Quantum Mater. 2 1
|
[11] |
Zhang G, Dong S, Yan Z, Guo Y, Zhang Q, Yunoki S, Dagotto E and Liu J M 2011 Phys. Rev. B 84 174413
|
[12] |
Johnson R D, Chapon L C, Khalyavin D D, Manuel P, Radaelli P G and Martin C 2012 Phys. Rev. Lett. 108 067201
|
[13] |
Caignaert V, Maignan A, Singh K, Simon C, Pralong V, Raveau B, Mitchell J F, Zheng H, Huq A and Chapon L C 2013 Phys. Rev. B 88 174403
|
[14] |
Zhou L, Wang X, Zhang X M, Shen X D, Dong S and Long Y W 2018 Acta Phys. Sin. 67 157505 (in Chinese)
|
[15] |
Ratcliff W, Lynn J W, Kiryukhin V, Jain P and Fitzsimmons M R 2016 Npj Quantum Mater. 1 16003
|
[16] |
Lu C and Liu J M 2016 J. Materiomics 2 213
|
[17] |
Pang H, Zhang F, Zeng M, Gao X, Qin M, Lu X, Gao J, Dai J and Li Q 2016 Npj Quantum Mater. 1 16015
|
[18] |
Higashiyama D, Miyasaka S and Tokura Y 2005 Phys. Rev. B 72 064421
|
[19] |
Tachibana M, Akiyama K, Kawaji H and Atake T 2005 Phys. Rev. B 72 224425
|
[20] |
Fukunaga M, Sakamoto Y, Kimura H, Noda Y, Abe N, Taniguchi K, Arima T, Wakimoto S, Takeda M, Kakurai K and Kohn K 2009 Phys. Rev. Lett. 103 077204
|
[21] |
Blake G R, Chapon L C, Radaelli P G, Park S, Hur N, Cheong S W and Rodríguez-Carvajal J 2005 Phys. Rev. B 71 214402
|
[22] |
Radaelli P G and Chapon L C 2008 J. Phys.: Condens. Matter 20 434213
|
[23] |
Chapon L C, Blake G R, Gutmann M J, Park S, Hur N, Radaelli P G and Cheong S W 2004 Phys. Rev. Lett. 93 177402
|
[24] |
dela Cruz C R, Yen F, Lorenz B, Gospodinov M M, Chu C W, Ratcliff W, Lynn J W, Park S and Cheong S W 2006 Phys. Rev. B 73 100406
|
[25] |
Ratcliff W, Kiryukhin V, Kenzelmann M, Lee S H, Erwin R, Schefer J, Hur N, Park S and Cheong S W 2005 Phys. Rev. B 72 060407
|
[26] |
Noda Y, Kimura H, Fukunaga M, Kobayashi S, Kagomiya I and Kohn K 2008 J. Phys.: Condens. Matter 20 434206
|
[27] |
Lu C L, Fan J, Liu H M, Xia K, Wang K F, Wang P W, He Q Y, Yu D P and Liu J M 2009 Appl. Phys. A 96 991
|
[28] |
Zhao Z Y, Liu M F, Li X, Lin L, Yan Z B, Dong S and Liu J M 2015 Sci. Rep. 4 3984
|
[29] |
Bukhari S H and Ahmad J 2017 Chin. Phys. B. 26 018103
|
[30] |
Lee N, Vecchini C, Choi Y J, Chapon L C, Bombardi A, Radaelli P G and Cheong S W 2013 Phys. Rev. Lett. 110 137203
|
[31] |
Bukhari S H, Kain T, Schiebl M, Shuvaev A, Pimenov A, Kuzmenko A M, Wang X, Cheong S W, Ahmad J and Pimenov A 2016 Phys. Rev. B 94 174446
|
[32] |
Kato S, Kohn K and Ishikawa M 1997 Ferroelectrics 203 323
|
[33] |
Liu J M and Dong S 2015 J. Adv. Dielect. 05 1530003
|
[34] |
Zhao Z Y, Liu M F, Li X, Wang J X, Yan Z B, Wang K F and Liu J M 2014 J. Appl. Phys. 116 054104
|
[35] |
Yang L, Li X, Liu M F, Li P L, Yan Z B, Zeng M, Qin M H, Gao X S and Liu J M 2016 Sci. Rep. 6 34767
|
[36] |
Balédent V, Chattopadhyay S, Fertey P, Lepetit M B, Greenblatt M, Wanklyn B, Saouma F O, Jang J I and Foury-Leylekian P 2015 Phys. Rev. Lett. 114 117601
|
[37] |
Basu T, Singh K, Gohil S, Ghosh S and Sampathkumaran E V 2015 J. Appl. Phys. 118 234103
|
[38] |
Deutsch M, Hansen T C, Fernandez-Diaz M T, Forget A, Colson D, Porcher F and Mirebeau I 2015 Phys. Rev. B 92 060410
|
[39] |
Chattopadhyay S, Balédent V, Damay F, Gukasov A, Moshopoulou E, Auban-Senzier P, Pasquier C, André G, Porcher F, Elkaim E, Doubrovsky C, Greenblatt M and Foury-Leylekian P 2016 Phys. Rev. B 93 104406
|
[40] |
Mansouri S, Jandl S, Balli M, Laverdiére J, Fournier P and Dimitrov D Z 2016 Phys. Rev. B 94 115109
|
[41] |
Moshopoulou E G, Foury-Leylekian P, Page K, Doubrovsky C, Greenblatt M and Hurd A J 2016 Nanoscale Ferroelectrics and Multiferroics (John Wiley & Sons, Ltd) pp. 375-399
|
[42] |
Vorob'ev S I, Andrievskii D S, Barsov S G, Getalov A L, Golovenchits E I, Komarov E N, Kotov S A, Mishchenko A Y, Sanina V A and Shcherbakov G V 2016 J. Exp. Theor. Phys. 123 1017
|
[43] |
Ahmad J, Bukhari S H, Jamil M T, Rehmani M K, Ahmad H and Sultan T 2017 Adv. Condens. Matter Phys. 2017 5389573
|
[44] |
Tung Y H, Yang C C, Hsu T W, Kao C W and Chen Y Y 2017 AIP Adv. 7 055830
|
[45] |
Yahia G, Damay F, Chattopadhyay S, Balédent V, Peng W, Elkaim E, Whitaker M, Greenblatt M, Lepetit M B and Foury-Leylekian P 2017 Phys. Rev. B 95 184112
|
[46] |
Khannanov B K, Sanina V A, Golovenchits E I and Scheglov M P 2016 JETP Lett. 103 248
|
[47] |
Khannanov B K, Sanina V A, Golovenchits E I and Scheglov M P 2017 J. Magn. Magn. Mater. 421 326
|
[48] |
Vecchini C, Bombardi A, Chapon L C, Lee N, Radaelli P G and Cheong S W 2014 J. Phys: Conf. Ser. 519 012004
|
[49] |
Popov Y F, Kadomtseva A M, Vorob'ev G P, Krotov S S, Kamilov K I and Lukina M M 2003 Phys. Solid State 45 2155
|
[50] |
Ngo T N M, Adem U and Palstra T T M 2015 Appl. Phys. Lett. 106 152904
|
[51] |
Satoh H, Suzuki S, Yamamoto K and Kamegashira N 1996 J. Alloys Compd. 234 1
|
[52] |
Kimura H, Kobayashi S, Wakimoto S, Noda Y and Kohn K 2007 Ferroelectrics 354 77
|
[53] |
Giovannetti G and van den Brink J 2008 Phys. Rev. Lett. 100 227603
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|