Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 076102    DOI: 10.1088/1674-1056/21/7/076102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Using a water-confined carbon nanotube to probe electricity of sequential charged segments of macromolecules

Wang Yu(王禹)a), Zhao Yan-Jiao(赵艳皎)b), and Huang Ji-Ping(黄吉平)a)†
a Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China;
b Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
Abstract  The detection of macromolecular conformation is particularly important in many physical and biological applications. Here we theoretically explore a method for achieving this detection by probing the electricity of sequential charged segments of macromolecules. Our analysis is based on molecular dynamics simulations, and we investigate a single file of water molecules confined in a half-capped single-walled carbon nanotube (SWCNT) with an external electric charge of +e or ?e (e is the elementary charge). The charge is located in the vicinity of the cap of the SWCNT and along the centerline of the SWCNT. We reveal the picosecond timescale for the re-orientation (namely, from one unidirectional direction to the other) of the water molecules in response to a switch in the charge signal, ?e → +e or +e → ?e. Our results are well understood by taking into account the electrical interactions between the water molecules and between the water molecules and the external charge. Because such signals of re-orientations can be magnified and transported according to Tu et al. [2009 Proc. Natl. Acad. Sci. USA 106 18120], it becomes possible to record fingerprints of electric signals arising from sequential charged segments of a macromolecule, which are expected to be useful for recognizing the conformations of some particular macromolecules.
Keywords:  molecular dynamics simulation      macromolecular conformation      single-walled carbon nanotube      water molecule  
Received:  16 March 2012      Accepted manuscript online: 
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  61.25.H- (Macromolecular and polymers solutions; polymer melts)  
Fund: Project supported by the Fok Ying Tung Education Foundation, China (Grant No. 131008), the National Basic Research Program of China (Grant No. 2011CB922004), and the National Natural Science Foundation of China (Grant No. 11075035).
Corresponding Authors:  Huang Ji-Ping     E-mail:  jphuang@fudan.edu.cn

Cite this article: 

Wang Yu(王禹), Zhao Yan-Jiao(赵艳皎), and Huang Ji-Ping(黄吉平) Using a water-confined carbon nanotube to probe electricity of sequential charged segments of macromolecules 2012 Chin. Phys. B 21 076102

[1] Flory P J 1969 Statistical Mechanics of Chain Molecules (New York: Interscience)
[2] Whitford D 2005 Proteins: Structure and Function (New York: John Wiley Sons)
[3] Ji C, Zhang L Y, Dou S X and Wang P Y 2011 Acta Phys. Sin. 60 098703 (in Chinese)
[4] Lian Z J 2011 Chin. Phys. B 20 076401
[5] McNeill C R, Watts B, Thomsen L, Belcher W J, Greenham N C, Dastoor P C and Ade H 2009 Macromolecules 42 3347
[6] Mseddi S, Njeh A, Schneider D, Fuess H and Ghozlen M H B 2011 J. Appl. Phys. 110 104506
[7] Harp J M, Hanson B L, Timm D E and Bunick G J 1999 Acta Crystallogr. D 55 1329
[8] Drummy L F, Yang J and Martin D C 2004 Ultramicroscopy 99 247
[9] Haas B, Beyer A, Witte W, Breuer T, Witte G and Volz K 2011 J. Appl. Phys. 110 073514
[10] Kong X, Wadhwa K, Verkade J G and Schmidt-Rohr K 2009 Macromolecules 42 1659
[11] Keeler J 2005 Understanding NMR Spectroscopy (New York: John Wiley Sons)
[12] Sui H X, Han B G, Lee J K, Walian P and Jap B K 2001 Nature 414 872
[13] Hausman R E and Cooper G M 2004 The Cell: a Molecular Approach (Washington D.C.: ASM Press)
[14] van Gunsteren W F, Billeter S R, Eising A A, Hünenberger P H, Krüger P, Mark A E, Scott W R P and Tironi I G 1996 Biomolecular Simulation: The GROMOS96 Manual and User Guide (Zürich: Hochschulverlag AG an der ETH Zürich)
[15] Ammenti A, Cecconi F, Marconi U M B and Vulpiani A 2009 J. Phys. Chem. B 113 10348
[16] Yang Z Y, Li S B, Zhang L X, Rehman A U and Liang H J 2010 J. Chem. Phys. 133 154903
[17] Luo K, Ala-Nissila T, Ying S C and Bhattacharya A 2007 Phys. Rev. Lett. 99 148102
[18] Tu Y S, Xiu P, Wan R Z, Hu J, Zhou R H and Fang H P 2009 Proc. Natl. Acad. Sci. USA 106 18120
[19] Li J Y, Gong X J, Lu H J, Li D, Fang H P and Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687
[20] Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J and Fang H P 2007 Nat. Nanotechnol. 2 709
[21] Wong-ekkabut J, Miettinen M S, Dias C and Karttunen M 2010 Nat. Nanotechnol. 5 555
[22] Tu Y S, Zhou R H and Fang H P 2010 Nanoscale 2 1976
[23] Li S Y, Xiu P, Lu H J, Gong X J, Wu K F, Wan R Z and Fang H P 2008 Nanotechnology 19 105711
[24] Shiomi J and Maruyama S 2009 Nanotechnology 20 055708
[25] Joseph S and Aluru N R 2008 Phys. Rev. Lett. 101 064502
[26] Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188
[27] Koga K, Gao G T, Tanaka H and Zeng X C 2001 Nature 412 802
[28] Yasuda M, Mimura R, Kawata H and Hirai Y 2011 J. Appl. Phys. 109 054304
[29] Song X, Liu S, Gan Z, Yan H and Ai Y 2009 J. Appl. Phys. 106 124308
[30] Wang Y, Zhao Y J and Huang J P 2011 J. Phys. Chem. B 115 13275
[31] Meng X W, Wang Y, Zhao Y J and Huang J P 2011 J. Phys. Chem. B 115 4768
[32] Gong X J and Fang H P 2008 Chin. Phys. B 17 2739
[33] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[34] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[35] Darden T A, York D M and Pedersen L G 1993 J. Chem. Phys. 98 10089
[36] Gao Y, Huang J P, Liu Y M, Gao L, Yu K W and Zhang X 2010 Phys. Rev. Lett. 104 034501
[37] Gao Y, Huang J P and Yu K W 2009 J. Appl. Phys. 105 124505
[38] Bachtold A, Hadley P, Nakanishi T and Dekker C 2001 Science 294 1317
[39] Bandaru P R, Daraio C, Jin S and Rao A M 2005 Nat. Mater. 4 663
[40] Fan R, Yue M, Karnik R, Majumdar A and Yang P D 2005 Phys. Rev. Lett. 95 086607
[41] Kong J, Franklin N R, Zhou C, Chapline M G, Peng S, Cho K and Dai H 2000 Science 287 622
[42] Ghosh S, Sood A K and Kumar N 2003 Science 299 1042
[43] Service R F 2006 Science 313 1088
[44] Majumder M, Chopra N, Andrews R and Hinds B 2005 Nature 438 44
[45] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
[46] Whitby M and Quirke N 2007 Nat. Nanotechnol. 2 87
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[11] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[12] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[13] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[14] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[15] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
No Suggested Reading articles found!