Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 067302    DOI: 10.1088/1674-1056/21/6/067302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A density functional theory study on the adsorption of CO and O2 on Cu-terminated Cu2O (111) surface

Li Min(李敏)a), Zhang Jun-Ying(张俊英) a)† Zhang Yue(张跃)b), and Wang Tian-Min(王天民)a)
a. Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), Department of Physics, Beihang University, Beijing 100191, China;
b. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract  The adsorptions of CO and O2 molecules individually on the stoichiometric Cu-terminated Cu2O (111) surface are investigated by first-principles calculations on the basis of the density functional theory. The calculated results indicate that the CO molecule preferably coordinates to the Cu2 site through its C atom with an adsorption energy of -1.69 eV, whereas the O2 molecule is most stably adsorbed in a tilt type with one O atom coordinating to the Cu2 site and the other O atom coordinating to the Cu1 site, and has an adsorption energy of -1.97 eV. From the analysis of density of states, it is observed that Cu 3d transfers electrons to 2π orbital of the CO molecule and the highest occupied 5σ orbital of the CO molecule transfers electrons to the substrate. The sharp band of Cu 4s is delocalized when compared to that before the CO molecule adsorption, and overlaps substantially with bands of the adsorbed CO molecule. There is a broadening of the 2π orbital of the O2 molecule because of its overlapping with the Cu 3d orbital, indicating that strong 3d-2π interactions are involved in the chemisorption of the O2 molecule on the surface.
Keywords:  adsorption      Cu2O (111)      density function theory  
Received:  20 October 2011      Revised:  29 November 2011      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.20.-r (Electron states at surfaces and interfaces)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03 Z428), the National Natural Science Foundation of China (Grant No. 50872005), the National Basic Research Program of China (Grant No. 2007CB613306), and the Innovation Foundation of BUAA for Ph. D. Graduates.
Corresponding Authors:  Zhang Jun-Ying     E-mail:  zjy@buaa.edu.cn

Cite this article: 

Li Min(李敏), Zhang Jun-Ying(张俊英) Zhang Yue(张跃), and Wang Tian-Min(王天民) A density functional theory study on the adsorption of CO and O2 on Cu-terminated Cu2O (111) surface 2012 Chin. Phys. B 21 067302

[1] Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo J N and Domen K 1998 Chem. Commun. 3 357
[2] Zhang Y G, Ma L L, Li J L and Yu Y 2007 Environ. Sci. Technol. 41 6264
[3] Li J L, Liu L, Yu Y, Tang Y W, Li H L and Du F P 2004 Electrochem. Commun. 6 940
[4] Zheng Z Z and Huang B 2009 J. Phys. Chem. C 113 14448
[5] Xu H L, Wang W Z and Zhu W J 2006 Phys. Chem. B 110 13829
[6] Goniakowski J, Finochi F and Noguera C 2008 Rep. Prog. Phys. 71 01 6501
[7] Schulz K H and Cox D F 1991 Phys. Rev. B 43 1610
[8] Islam M M, Diawara B, Maurice V and Marcus P 2009 Surf. Sci. 603 2087
[9] Kunze J, Maurice V, Klein L H, Strehblow H H and Marcus P 2001 J. Phys. Chem. B 105 4263
[10] Strehblow H H, Maurice V and Marcus P 2001 Electrochimica. Acta 46 3755
[11] Islam M M, Diawara B, Maurice V and Marcus P 2009 J. Mol. Struct.: Theochem 903 41
[12] Vissokov G P 2004 Catal. Today 89 213
[13] Vissokov G P 2004 Catal. Today 89 223
[14] Sun B Z, Chen W K, Zheng J D and Lu C H 2008 Appl. Surf. Sci. 255 3141
[15] Casarin M, Maccato C and Vittadini A 1997 Chem. Phys. Lett. 280 53
[16] Casarin M and Vittadini A 1997 Surf. Sci. 387 L1079
[17] Bredow T, Marquez A M and Pacchioni G 1999 Surf. Sci. 430 137
[18] Soon A, Sohnel T and Idriss H 2005 Surf. Sci. 579 131
[19] Sun B Z, Chen W K, Wang X and Lu C H 2008 Chin. J. Inorg. Chem. 24 340
[20] Zhang R G, Liu H Y, Zheng H Y, Ling L X, Li Z and Wang B J 2011 Appl. Surf. Sci. 257 4787
[21] Zuo Z J, Huang W, Han P D and Li Z H 2010 Appl. Surf. Sci. 256 2357
[22] Zhang R G, Wang B J and Ling L X 2010 Appl. Surf. Sci. 257 1175
[23] Casarin M, Maccato C, Vigato N and Vittadini A 1999 Appl. Surf. Sci. 142 164
[24] Casarin M, Macato C and Vittadini A 1999 Chem. Phys. Lett. 300 403
[25] Sun B Z, Chen W K, Wang X and Lu C H 2007 Appl. Surf. Sci. 253 7501
[26] Chen Y H, Du R, Zhang Z L, Wang W C, Zhang C R, Kang L and Luo Y C 2010 Acta Phys. Sin. 60 086801 (in Chinese)
[27] Li Q, Fan G H, Xiong W P and Zhang Y 2010 Acta Phys. Sin. 59 4170 (in Chinese)
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[30] Perdew J P, Ruzsinszky A, Tao J, Staroverov V N, Scuseria G E and Csonka G I 2005 J. Chem. Phys. 123 62201
[31] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
[32] Milman V, Winkler B, White J A, Pickard C J and Payne M C 2000 Int. J. Quantum Chem. 77 895
[33] Ruiz E, Alvarez S, Alemany P and Evarestov R A 1997 Phys. Rev. B 56 7189
[34] Werner A and Hochheimer H D 1982 Phys. Rev. B 25 5929
[35] Makov G and Payne M C 1995 Phys. Rev. B 51 4014
[36] Neugebauer J and Scheffler M 1992 Phys. Rev. B 46 16067
[37] Li M, Zhang J Y, Zhang Y, Zhang G F and Wang T M 2011 Appl. Surf. Sci. 257 10710
[1] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[4] Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
Jia-Li Liu(刘佳丽), Guo-Dong Fu(付国栋), Ping Wu(吴平), Shang Liu(刘尚), Jin-Guang Yang(杨金光), Shi-Ping Zhang(张师平), Li Wang(王立), Min Xu(许闽), and Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2022, 31(11): 118101.
[5] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[6] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[7] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[8] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[9] STM study of selenium adsorption on Au(111) surface
Bin Liu(刘斌), Yuan Zhuang(庄源), Yande Que(阙炎德), Chaoqiang Xu(徐超强), Xudong Xiao(肖旭东). Chin. Phys. B, 2020, 29(5): 056801.
[10] Beryllium carbide as diffusion barrier against Cu: First-principles study
Hua-Liang Cao(曹华亮), Xin-Lu Cheng(程新路), Hong Zhang(张红). Chin. Phys. B, 2020, 29(1): 016601.
[11] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[12] Real-space observation on standing configurations of phenylacetylene on Cu (111) by scanning probe microscopy
Jing Qi(戚竞), Yi-Xuan Gao(高艺璇), Li Huang(黄立), Xiao Lin(林晓), Jia-Jia Dong(董佳家), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(6): 066801.
[13] Competitive and synergistic adsorption of binary volatile organic compound mixtures on activated carbon
Jing Zhu(祝静), Hong-Lei Zhan(詹洪磊), Kun Zhao(赵昆), Xin-Yang Miao(苗昕扬), Qiong Zhou(周琼), Wen-Zheng Yue(岳文正). Chin. Phys. B, 2019, 28(2): 020204.
[14] Co-adsorption of O2 and H2O on α-uranium (110) surface: A density functional theory study
Xin Qu(瞿鑫), Ru-Song Li(李如松), Bin He(何彬), Fei Wang(王飞), Kai-Long Yuan(袁凯龙). Chin. Phys. B, 2018, 27(7): 076501.
[15] Adsorption and diffusion of F2 molecules on pristine graphene
Yong Yang(杨勇), Fu-Chi Liu(刘富池), Yoshiyuki Kawazoe(川添良幸). Chin. Phys. B, 2018, 27(10): 106801.
No Suggested Reading articles found!