Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057108    DOI: 10.1088/1674-1056/21/5/057108
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The optical phonon effect of quantum rod qubits

Wang Cui-Tao(王翠桃), Wu Zhi-Yong(吴志永), Zhao Cui-Lan(赵翠兰), Ding Zhao-Hua(丁朝华), and Xiao Jing-Lin(肖景林)
College of Physics and Electronic Information, Inner Mongolia National University, Tongliao 028043, China
Abstract  The Hamiltonian of a quantum rod with an ellipsoidal boundary is given by using a coordinate transformation in which the ellipsoidal boundary is changed into a spherical one. Under the condition of strong electron--longitudinal optical phonon coupling in the rod, we obtain both the electron eigenfunctions and the eigenenergies of the ground and first-excited state by using the Pekar-type variational method. This quantum rod system may be used as a two-level qubit. When the electron is in the superposition state of the ground and first-excited states, the probability density of the electron oscillates in the rod with a certain period. It is found that the oscillation period is an increasing function of the ellipsoid aspect ratio and the transverse and longitudinal effective confinement lengths of the quantum rod, whereas it is a decreasing function of the electron--phonon coupling strength.
Keywords:  quantum rod      qubit      probability density      oscillation period  
Received:  09 August 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  71.38.-k (Polarons and electron-phonon interactions)  
  63.20.kd (Phonon-electron interactions)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10964005).

Cite this article: 

Wang Cui-Tao(王翠桃), Wu Zhi-Yong(吴志永), Zhao Cui-Lan(赵翠兰), Ding Zhao-Hua(丁朝华), and Xiao Jing-Lin(肖景林) The optical phonon effect of quantum rod qubits 2012 Chin. Phys. B 21 057108

[1] Bennett C H and DiVincenzo D P 2000 Nature 404 247
[2] Sikorski C and Merkt U 1989 Phys. Rev. Lett. 62 2164
[3] Lorke A, Kotthaus J P and Ploog K 1990 Phys. Rev. Lett. 64 2559
[4] Normura S and Kobayashi T 1992 Phys. Rev. B 45 1305
[5] Li S S and Xia J B 2006 J. Appl. Phys. 100 083714
[6] Li S S and Xia J B 2007 Chin. Phys. 16 0001
[7] Chi F and Li S S 2006 J. Appl. Phys. 99 043705
[8] Li S S, Xia J B, Liu J L, Yang F H, Niu Z C, Feng S L and Zheng H Z 2001 J. Appl. Phys. 90 6151
[9] Jin G S, Ahmadliz, Li S S, Niu Z C, Yang F H and Feng S L 2002 Physics 31 773 (in Chinese)
[10] Berman G P, Doolen G D and Tsifrinovich V I 2000 Superlatt. Microstruct. 27 89
[11] Barenco A, Deutsch D, Ekert A and Jozsa R 1995 Phys. Rev. Lett. 74 4803
[12] Fedichkin L and Fedorov A 2004 Phys. Rev. A 69 032311
[13] Li S S, Long G L, Bai F S, Feng S L and Zheng H Z 2001 Proc. Natl. Acad. Sci. USA 98 11847
[14] Wang Z W and Xiao J L 2007 Acta Phys. Sin. 56 678 (in Chinese)
[15] Yin J W, Xiao J L, Yu Y F and Wang Z W 2009 Chin. Phys. B 18 446
[16] Wang C T, Zhao C L and Xiao J L 2009 Int. J. Nanosci. 8 439
[17] Li X Z and Xia J B 2002 Phys. Rev. B 66 115316
[18] Xiao J L and Zhao C L 2011 Superlatt. Microstruc. 49 9
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[3] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[4] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[5] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[6] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[7] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[8] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[9] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[10] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[11] Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states
Bing Wang(王冰), San-Qiu Liu(刘三秋), and Li-Hua Gong(龚黎华). Chin. Phys. B, 2022, 31(1): 010302.
[12] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[13] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[14] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[15] Stationary response of colored noise excited vibro-impact system
Jian-Long Wang(王剑龙), Xiao-Lei Leng(冷小磊), and Xian-Bin Liu(刘先斌). Chin. Phys. B, 2021, 30(6): 060501.
No Suggested Reading articles found!