Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 055205    DOI: 10.1088/1674-1056/21/5/055205

Using short pulses to enhance the production rate of vibrationally excited hydrogen molecules in hydrogen discharge

Sun Ji-Zhong(孙继忠), Li Xian-Tao(李现涛), Bai Jing(白净), and Wang De-Zhen(王德真)
School of Physics and Optoelectronic Technology and College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, China
Abstract  Hydrogen discharges driven by the combined radio-frequency (rf)/short pulse sources are investigated using the particle-in-cell method. The simulation results show that the discharge driven additionally by the short pulse can enhance the electron density and modulate the electron energy to provide a better condition for negative hydrogen ion production than the discharge driven by the rf-only source.
Keywords:  hydrogen discharge      particle-in-cell simulation      negative hydrogen ion  
Received:  15 April 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  52.65.Rr (Particle-in-cell method)  
  52.80.-s (Electric discharges)  
  52.25.-b (Plasma properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875022).

Cite this article: 

Sun Ji-Zhong(孙继忠), Li Xian-Tao(李现涛), Bai Jing(白净), and Wang De-Zhen(王德真) Using short pulses to enhance the production rate of vibrationally excited hydrogen molecules in hydrogen discharge 2012 Chin. Phys. B 21 055205

[1] Gottscho R A, Preppernau B L, Pearton S J, Emerson A B and Giapis K P 1990 J. Appl. Phys. 68 440
[2] Bachmann P K, Leers D and Lydtin H 1991 Diamond Relat. Mater. 1 1
[3] Aoki Y, Aoyama S, Uetake H, Morizuka K and Ohmi T 1993 J. Vac. Sci. Technol. A 11 307
[4] Hemsworth R S and Inoue T 2005 IEEE Trans. Plasma Sci. 33 1799
[5] Fantz U, Franzen P, Kraus W, Berger M, Christ-Koch S, Falter H, Fröschle M, Gutser R, Heinemann B, Martens C, McNeely P, Riedl R, Speth E, Stäbler A and W黱derlich D 2009 Nucl. Fusion 49 125007
[6] Kuriyama M, Akino N, Aoyagi T, Ebisawa N, Isozaki N, Honda A, Inoue T, Itoh T, Kawai M, Kazawa M, Koizumi J, Mogaki K, Ohara Y, Ohga T, Okumura Y, Oohara H, Ohshima K, Satoh F, Takenouchi T, Toyokawa Y, Usui K, Watanabe K, Yamamoto M, Yamazaki T and Zhou C 1998 Fusion Eng. Des. 39--4 115
[7] Bacal M 2006 Nucl. Fusion 46 S250
[8] Capitelli M and Gorse C 2005 IEEE Trans. Plasma Sci. 33 1832
[9] Hopkins M B and Mellon K N 1991 Phys. Rev. Lett. 67 449
[10] Sun I Z, Li X T, Sang C F, Jiang W, Zhang P Y and Wang D Z 2010 Phys. Plasmas 17 103505
[11] Bai J, Sun J Z, Zhang Q Z and Wang D Z 2011 Curr. Appl. Phys. 11 S140
[12] Birdsall C K and Langdon A B 1985 Plasma Physics via Computer Simulation (New York:McGraw-Hill)
[13] Verboncoeur J P 2005 Plasma Phys. Control. Fusion 47 A231
[14] Vahedi V and Surendra M 1995 Comput. Phys. Commun. 87 179
[15] Janev R K, Reiter D and Samm U 2003 Collision Process in Low-temperature Hydrogen Plasmas Berichte des Forschungszentrums Jülich J黮-4105
[17] Celiberto R, Janev R, Laricchiuta A, Capitelli M, Wadehra J and Atems D 2001 Atom. Data Nucl. Data 77 161
[18] Celiberto R, Capitelli M and Laricchiuta A 2002 Phys. Scr. 96 31
[20] Krstić P S, Schultz D R and Janev R K 2002 Phys. Scr. 96 61
[21] Krstić P S and Janev R K 2003 Phys. Rev. A 67 22708
[22] Stewart R A and Lieberman M A 1991 J. Appl. Phys. 70 3481
[23] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (2nd Edn.) (New York:Wiley-Interscience) pp. 396--429
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[3] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[4] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[5] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[6] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[7] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[8] Dynamic study of compressed electron layer driven by linearly polarized laser
Feng-chao Wang(王凤超). Chin. Phys. B, 2016, 25(5): 054102.
[9] Effect of inner-surface roughness of conical target on laser absorption and fast electron generation
Wang Huan (王欢), Cao Li-Hua (曹莉华), Zhao Zong-Qing (赵宗清), Yu Ming-Yang (郁明阳), Gu Yu-Qiu (谷渝秋), He Xian-Tu (贺贤土). Chin. Phys. B, 2014, 23(5): 055202.
[10] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao (王凤超). Chin. Phys. B, 2013, 22(12): 124102.
[11] Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization
Luo Mu-Hua(罗牧华) and Zhang Qiu-Ju(张秋菊). Chin. Phys. B, 2011, 20(8): 085201.
[12] Photodetachment of H- near an elastic surface in a magnetic field
Wang Lei(汪磊), Yang Hai-Feng(杨海峰), Liu Xiao-Jun(柳晓军), and Liu Hong-Ping(刘红平). Chin. Phys. B, 2011, 20(3): 033104.
[13] Particle-in-cell investigation on the resonant absorption of a plasma surface wave
Lan Chao-Hui(蓝朝晖) and Hu Xi-Wei(胡希伟) . Chin. Phys. B, 2011, 20(10): 105202.
[14] Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal
Qi Li-Mei(亓丽梅), Yang Zi-Qiang(杨梓强), Lan Feng(兰峰), Gao Xi(高喜), and Li Da-Zhi(李大治). Chin. Phys. B, 2010, 19(3): 034210.
[15] Comparative research on three types of coaxial slow wave structures
Xiao Ren-Zhen(肖仁珍), Liu Guo-Zhi(刘国治), and Chen Chang-Hua(陈昌华). Chin. Phys. B, 2008, 17(10): 3807-3811.
No Suggested Reading articles found!