Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 105202    DOI: 10.1088/1674-1056/20/10/105202

Particle-in-cell investigation on the resonant absorption of a plasma surface wave

Lan Chao-Hui(蓝朝晖)a)† and Hu Xi-Wei(胡希伟)b)
a Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China; College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  The resonant absorption of a plasma surface wave is supposed to be an important and efficient mechanism of power deposition for a surface wave plasma source. In this paper, by using the particle-in-cell method and Monte Carlo simulation, the resonance absorption mechanism is investigated. Simulation results demonstrate the existence of surface wave resonance and show the high efficiency of heating electrons. The positions of resonant points, the resonance width and the spatio-temporal evolution of the resonant electric field are presented, which accord well with the theoretical results. The paper also discusses the effect of pressure on the resonance electric field and the plasma density.
Keywords:  particle-in-cell simulation      plasma surface wave      resonant absorption  
Received:  09 March 2011      Revised:  12 May 2011      Accepted manuscript online: 
PACS:  52.65.Rr (Particle-in-cell method)  
  52.65.Pp (Monte Carlo methods)  
  52.50.Sw (Plasma heating by microwaves; ECR, LH, collisional heating)  

Cite this article: 

Lan Chao-Hui(蓝朝晖) and Hu Xi-Wei(胡希伟) Particle-in-cell investigation on the resonant absorption of a plasma surface wave 2011 Chin. Phys. B 20 105202

[1] Sugai H, Ghanashev I and Nagatsu M 1998 Plasma Sources Sci. Technol. 7 192
[2] Ghanashev I, Nagatsu M, Morita S and Sugai H 1998 J. Vac. Sci. Technol. A 16 1537
[3] Nagatsu M, Morita S, Ghanashev I, Ito A, Toyoda N and Sugai H J 2000 Physica D: Appl. Phys. 33 1143
[4] Ghanashev I and Sugai H 2000 Phys. Plasmas 7 3051
[5] Ganashev I, Nagatsu M and Sugai H 1997 Jpn. J. Appl. Phys. 36 337
[6] Wu T J, Guan W J and Tsai C M 2001 Phys. Plasma 8 3195
[7] Nagatsu M, Ghanashev I and Sugai H 1998 Plasma Sources Sci. Technol. 7 230
[8] Nagatsu M, Naito K, Ogino A and Nanko S 2006 Plasma Sources Sci. Technol. 15 37
[9] Lan C H, Hu X W, Jiang Z H and Liu M H 2010 Acta Phys. Sin. 59 4093 (in Chinese)
[10] Ou Q R and Liang R Q 2002 Vacuum and Low Temperature 8 28 (in Chinese)
[11] Zhan R J, Wu C F, Wen X H, Zhu X D and Zhou H Y 2001 Vac. Sci. Technol. 21 30 (in Chinese)
[12] Liang Y Z, Ou Q R, Liang B and Liang R Q 2008 Chin. Phys. Lett. 25 1761
[13] Chen Z Q, Zhou P Q, Chen W, Lan C H, Liu M H and Hu X W 2008 Plasma Sci. Technol. 10 655
[14] Ganashev I, Sugai H, Morita S and Toyoda N 1999 Plasma Sources Sci. Technol. 8 363
[15] Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65
[16] Ginzburg V 1965 The Propagation of Electromagnetic Waves in Plasmas (London: Pergamon Press)
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[3] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[4] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[5] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[6] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[7] Dynamic study of compressed electron layer driven by linearly polarized laser
Feng-chao Wang(王凤超). Chin. Phys. B, 2016, 25(5): 054102.
[8] Design and fabrication of structural color by local surface plasmonic meta-molecules
Ma Ya-Qi (马亚琪), Shao Jin-Hai (邵金海), Zhang Ya-Feng (张亚峰), Lu Bing-Rui (陆冰睿), Zhang Si-Chao (张思超), Sun Yan (孙艳), Qu Xin-Ping (屈新萍), Chen Yi-Fang (陈宜方). Chin. Phys. B, 2015, 24(8): 080702.
[9] Effect of inner-surface roughness of conical target on laser absorption and fast electron generation
Wang Huan (王欢), Cao Li-Hua (曹莉华), Zhao Zong-Qing (赵宗清), Yu Ming-Yang (郁明阳), Gu Yu-Qiu (谷渝秋), He Xian-Tu (贺贤土). Chin. Phys. B, 2014, 23(5): 055202.
[10] Acoustic anechoic layers with singly periodic arrayof scatterers: Computational methods, absorptionmechanisms, and optimal design
Yang Hai-Bin (杨海滨), Li Yue (李岳), Zhao Hong-Gang (赵宏刚), Wen Ji-Hong (温激鸿), Wen Xi-Sen (温熙森). Chin. Phys. B, 2014, 23(10): 104304.
[11] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao (王凤超). Chin. Phys. B, 2013, 22(12): 124102.
[12] Using short pulses to enhance the production rate of vibrationally excited hydrogen molecules in hydrogen discharge
Sun Ji-Zhong(孙继忠), Li Xian-Tao(李现涛), Bai Jing(白净), and Wang De-Zhen(王德真) . Chin. Phys. B, 2012, 21(5): 055205.
[13] Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization
Luo Mu-Hua(罗牧华) and Zhang Qiu-Ju(张秋菊). Chin. Phys. B, 2011, 20(8): 085201.
[14] Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal
Qi Li-Mei(亓丽梅), Yang Zi-Qiang(杨梓强), Lan Feng(兰峰), Gao Xi(高喜), and Li Da-Zhi(李大治). Chin. Phys. B, 2010, 19(3): 034210.
[15] Comparative research on three types of coaxial slow wave structures
Xiao Ren-Zhen(肖仁珍), Liu Guo-Zhi(刘国治), and Chen Chang-Hua(陈昌华). Chin. Phys. B, 2008, 17(10): 3807-3811.
No Suggested Reading articles found!