Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 033104    DOI: 10.1088/1674-1056/20/3/033104
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Photodetachment of H- near an elastic surface in a magnetic field

Wang Lei(汪磊), Yang Hai-Feng(杨海峰), Liu Xiao-Jun(柳晓军), and Liu Hong-Ping(刘红平)
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  This paper investigates the photodetachment of the negative hydrogen ion H- near an elastic wall in a magnetic field. The magnetic field confines the perpendicular motion of the electron, which results in a real three-dimensional well for the detached electron. The analytical formulas for the cross section of the photodetachment in the three-dimensional quantum well are derived based on both the quantum approach and closed-orbit theory. The magnetic field and the elastic surface lead to two completely different modulations to the cross section of the photodetachment. The oscillation amplitude depends on the strength of the magnetic field, the ion-wall distance and the photon polarization as well. Specially, for the circularly polarized photon-induced photodetachment, the cross sections display a suppressed (EEth)-1/2 threshold law with energy E in the vicinity above Landau energy Eth, contrasting with the (EEth)-1/2 threshold law in the presence of only the magnetic field. The semiclassical calculation fits the quantum result quite well, although there are still small deviations. The difference is attributed to the failure of semiclassical mechanics.
Keywords:  negative hydrogen ion      photodetachment      elastic surface      magnetic field  
Received:  06 August 2010      Revised:  07 September 2010      Accepted manuscript online: 
PACS:  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
  31.15.xg (Semiclassical methods)  
  32.80.Gc (Photodetachment of atomic negative ions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774162).

Cite this article: 

Wang Lei(汪磊), Yang Hai-Feng(杨海峰), Liu Xiao-Jun(柳晓军), and Liu Hong-Ping(刘红平) Photodetachment of H- near an elastic surface in a magnetic field 2011 Chin. Phys. B 20 033104

[1] Sjakste J, Borisov A G and Gauyacq J P 2004 emphPhys. Rev. Lett. 92 156101
[2] Yang G C, Zheng Y Z and Chi X X 2006 emphJ. Phys. B 39 1855
[3] Yang G C, Rui K K and Zheng Y Z 2007 emphChin. J. Chem. Phys. 20 537
[4] Yang G C, Zheng Y Z and Chi X X 2006 emphPhys. Rev. A 73 043413
[5] Yang G C, Rui K K and Zheng Y Z 2009 emphPhysica B 404 1576
[6] Wang D H, Ma X G, Wang M S and Yang C L 2007 emphChin. Phys. 16 1307
[7] Wang D H and Yu Y J 2008 emphChin. Phys. B 17 1231
[8] Zhao H J and Du M L 2009 emphPhys. Rev. A 79 023408
[9] Huang K Y and Wang D H 2010 emphJ. Phys. Chem. C 114 8958
[10] Du M L 1989 emphPhys. Rev. A 40 1330
[11] Du M L and Delos J B 1988 emphPhys. Rev. A 38 5609
[12] Ohmura T and Ohmura H 1960 emphPhys. Rev. 118 154
[13] Fano U 1981 emphPhys. Rev. A 24 619
[14] Harmin D A 1982 emphPhys. Rev. A 26 2656
[15] Greene C H 1987 emphPhys. Rev. A 36 4236
[16] Du M L and Delos J B 1987 emphPhys. Rev. Lett. 58 1731
[17] Du M L and Delos J B 1988 emphPhys. Rev. A 38 1913
[18] Peters A D, Jaff C and Delos J B 1997 emphPhys. Rev. A 56 331
[19] Wang D H 2007 emphEur. Phys. J. D 45 179
[20] Wigner E P 1948 emphPhys. Rev. 73 1002
[21] Crawford O H 1988 emphPhys. Rev. A 37 2432 endfootnotesize
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[4] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[5] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[9] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[10] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[11] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[12] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[13] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[14] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[15] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
No Suggested Reading articles found!