Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 054703    DOI: 10.1088/1674-1056/21/5/054703
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Asymmetry of the water flux induced by the deformation of a nanotube

He Jun-Xia(何俊霞)a), Lu Hang-Jun(陆杭军) a)†, Liu Yang(刘扬)b), Wu Feng-Min(吴锋民)a), Nie Xue-Chuan(聂雪川)a), Zhou Xiao-Yan(周晓艳) a), and Chen Yan-Yan(陈艳燕)a)
a. Department of Physics, Zhejiang Normal University, Jinhua 321004, China;
b. Department of Mechanical Engineering, the Hong Kong Polytechnic University, Hong Kong, China
Abstract  The behavior of nano-confined water is expected to be fundamentally different from the behavior of bulk water. At the nanoscale, it is still unclear whether water flows more easily along the convergent direction or the divergent one, and whether a hourglass shape is more convenient than a funnel shape for water molecules to pass through a nanotube. Here, we present an approach to explore these questions by changing the deformation position of a carbon nanotube. The results of our molecular dynamics simulation indicate that the water flux through the nanotube changes significantly when the deformation position moves away from the middle region of the tube. Different from the macroscopic level, we find water flux asymmetry (water flows more easily along the convergent direction than along the divergent one), which plays a key role in a nano water pump driven by a ratchet-like mechanism. We explore the mechanism and calculate the water flux by means of the Fokker--Planck equation and find that our theoretical results are well consistent with the simulation results. Furthermore, the simulation results demonstrate that the effect of deformation location on the water flux will be reduced when the diameter of the nanochannel increases. These findings are helpful for devising water transporters or filters based on carbon nanotubes and understanding the molecular mechanism of biological channels.
Keywords:  single-walled carbon nanotube      deformation position      molecular dynamics simulation      water flux  
Received:  09 September 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  47.61.-k (Micro- and nano- scale flow phenomena)  
  89.40.Cc (Water transportation)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  61.20.Ja (Computer simulation of liquid structure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11005093, 10932010, and 10972199), the Zhejiang Provincial Natural Science, China (Grant Nos. Z6090556, Y6100384, and Y607425), the Zhejiang Provincial Education Department, China (Grant No. Y200805556), and the Hong Kong Polytechnic University, China (Grant No. G-YG84).

Cite this article: 

He Jun-Xia(何俊霞), Lu Hang-Jun(陆杭军), Liu Yang(刘扬), Wu Feng-Min(吴锋民), Nie Xue-Chuan(聂雪川), Zhou Xiao-Yan(周晓艳), and Chen Yan-Yan(陈艳燕) Asymmetry of the water flux induced by the deformation of a nanotube 2012 Chin. Phys. B 21 054703

[1] Whitby M and Quirk N 2007 Nature Nanotech. 2 87
[2] Zhang Y, Wen B, Song X Y and Li T J 2010 Acta Phys. Sin. 59 3583 (in Chinese)
[3] Squires T M and Quake S R 2005 Rev. Mod. Phys. 77 977
[4] Zhao Y C, Song L, Deng K, Liu Z, Zhang Z X, Yang Y L, Wang C, Yang H F, Jin A Z, Luo Q, Gu C Z, Xie S S and Sun L F 2008 Adv. Mater. 20 1772
[5] Ghosh S, Sood A K and Kumar N 2003 Science 299 1042
[6] Wang Y J, Wang L D, Yang M, Liu G Q and Yan C Acta Phys. Sin. 59 4950 (in Chinese)
[7] Kral P and Shapiro M 2001 Phys. Rev. Lett. 86 131
[8] Servic R F 2006 Science 313 1088
[9] Zhao Q D and Zhang Z H 2010 Acta Phys. Sin. 59 8098 (in Chinese)
[10] Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188
[11] Koga K, Gao G T, Tanaka H and Zeng X C 2001 Nature 412 802
[12] Mashl R J, Joseph S, Aluru N R and Jakobsson E 2003 Nano. Lett. 3 589
[13] Striolo A 2006 Nano. Lett. 6 633
[14] Xiu P, Zhou B, Qi W P, Lu H J, Tu Y S and Fang H P 2009 J. Am. Chem. Soc. 131 2840
[15] Joseph S and Aluru N R 2008 Nano. Lett. 8 452
[16] Wan R Z, Li J Y, Lu H J and Fang H P 2005 J. Am. Chem. Soc. 127 7166
[17] Li J Y, Gong X J, Lu H J, Li D, Fang H P and Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687
[18] Murata K, Mitsuoaka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A and Fujiyoshi Y 2000 Nature 407 599
[19] Sui H X, Han B G, Lee J K, Walian P and Jap B K 2001 Nature 414 872
[20] Jensen M O, Tajkhorshid E and Schulten K 2003 Biophys. J. 85 2884
[21] Hashido M, Kidera A and Ikeguchi M 2007 Biophys. J. 93 373
[22] Lu H J, Zhou X Y, Wu F M and Xu Y S 2008 J. Phys. Chem. B 112 16777
[23] Zhu F Q and Schulten K 2003 Biophys. J. 85 236
[24] Beckstein O and Sansom M S P 2003 Proc. Natl. Acad. Sci. USA 100 7063
[25] Lu H J, Li J Y, Gong X J, Wan R Z, Zeng L and Fang H P 2008 Phys. Rev. B 77 174115
[26] Wu L S, Wu F M, Kou J L, Lu H J and Liu Y 2011 Phys. Rev. E 83 061913
[27] Fang H P, Wan R Z, Gong X J, Lu H J and Li S Y 2008 J. Phys. D 41 103002
[28] Li J Y, Yang Z X, Fang H P, Zhou R H and Tang X W 2007 Chin. Phys. Lett. 24 2710
[29] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[30] Zhu F Q, Tajkhorshid E and Schulten K 2002 Biophys. J. 83 154
[31] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[32] Lindahl E, Hess B and van der Spoel D 2001 J. Mol. Model 7 306
[33] Ioan K and Klaus S 2004 Phys. Rev. Lett. 93 238102
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[13] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[14] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[15] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
No Suggested Reading articles found!