Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 054702    DOI: 10.1088/1674-1056/21/5/054702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Coupling effect of Brownian motion and laminar shear flow on colloid coagulation:a Brownian dynamics simulation study

Xu Sheng-Hua(徐升华)a)b), Sun Zhi-Wei(孙祉伟)a)b), Li Xu(李旭)a)b), and Jin Tong Wangc)
a. Key Laboratory of Microgravity Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
b. National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
c. Department of Physics, Southern University and A&M College, Baton Rouge, LA 70813, USA
Abstract  Simultaneous orthokinetic and perikinetic coagulations (SOPCs) are studied for small and large Peclet numbers (Pe) using Brownian dynamics simulation. The results demonstrate that the contributions of the Brownian motion and the shear flow to the overall coagulation rate are basically not additive. At the early stages of coagulation with small Peclet numbers, the ratio of overall coagulation rate to the rate of pure  perikinetic coagulation is proportional to  Pe-1/2, while with high Peclet numbers, the ratio of overall coagulation rate to the rate of pure orthokinetic coagulation is proportional to  Pe-1/2.Moreover, our results show that the aggregation rate generally changes with time for the SOPC, which is different from that for pure perikinetic and pure orthokinetic coagulations. By comparing the SOPC with pure perikinetic and pure orthokinetic coagulations, we show that the redistribution of particles due to Brownian motion can play a very important role in the SOPC. In addition, the effects of redistribution in the directions perpendicular and parallel to the shear flow direction are different. This perspective explains the behavior of coagulation due to the joint effects of the Brownian motion (perikinetic) and the fluid motion (orthokinetic).
Keywords:  simultaneous orthokinetic and perikinetic coagulation      Brownian motion      shear flow      colloidal aggregation  
Received:  12 October 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  47.57.eb (Diffusion and aggregation)  
  47.57.J- (Colloidal systems)  
  82.70.Dd (Colloids)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10972217, 10932012 and 11032011) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-L08).

Cite this article: 

Xu Sheng-Hua(徐升华), Sun Zhi-Wei(孙祉伟), Li Xu(李旭), and Jin Tong Wang Coupling effect of Brownian motion and laminar shear flow on colloid coagulation:a Brownian dynamics simulation study 2012 Chin. Phys. B 21 054702

[1] Elimelech M, Gregory J, Jia X and Williams R A 1995 Particle Deposition and Aggregation (Oxford:Butterworth--Heinemann)
[2] Allain C, Cloitre M and Wafra M 1995 Phys. Rev. Lett. 74 1478
[3] Molina-Bolívar J A, Galisteo-Gonz醠ez F and Hidalgo-Álvarez R 1999 J. Chem. Phys. 110 5412
[4] Stanislav D, Chao Z, Rajesh N D and Qun Y 2005 Adv. Colloid Interface Sci. 114 119
[5] Vincent B 1992 Adv. Colloid Interface Sci. 42 279
[6] Sun Z W, Xu S H, Liu J, Li Y M, Lou L R and Xie J C 2005 J. Chem. Phys. 122 184904
[7] Sun Z W, Liu J and Xu S H 2006 Langmuir 22 4946
[8] Liu J, Xu S H and Sun Z W 2007 Langmuir 23 11451
[9] Xu S H and Sun Z W 2010 Langmuir 26 6908
[10] Smoluchowski M 1917 Z. Phys. Chem. 92 129
[11] Swift D L and Friedlander S K 1964 J. Colloid Sci. 19 621
[12] Laurenzi I J and Diamond S L 2002 Ind. Eng. Chem. Res. 41 413
[13] Han M Y and Lawler D F 1992 J. Am. Water Works Assoc. 84 79
[14] Chang H N and Robertson C R 1976 Ann. Biomed. Eng. 4 151
[15] Melis S, Verduyn M, Storti G, Morbidelli M and Baldyga J 1999 AIChE J. 45 1383
[16] van de Ven T G M and Mason S G 1977 Colloid Polymer Sci. 255 794
[17] Feke D L and Schowalter W R 1983 J. Fluid Mech. 133 17
[18] Zinchenko A Z and Davis R H 1995 Phys. Fluids 7 2310
[19] Puertas A M, Maroto J A, Fernandez-Barbero A and de las Nieves F J 1999 Phys. Rev. E 59 1943
[20] Puertas A M, Fernandez-Barbero A and de las Nieves F J 1999 Comput. Phys. Commun. 121--122 353
[21] Romero-cano M S, Puertas A M and de las Nieves F J 2000 J. Chem. Phys. 112 8654
[22] Ermak D L and McCammon J A 1978 J. Chem. Phys. 69 1352
[23] Banchio A J and Brady J F 2003 J. Chem. Phys. 118 10323
[24] Grayer T and Winter U 2009 J. Chem. Phys. 130 114905
[25] Xu S H and Sun Z W 2007 J. Chem. Phys. 126 144903
[1] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[2] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[3] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[4] Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives
Hossam A. Ghany, Abd-Allah Hyder, M Zakarya. Chin. Phys. B, 2020, 29(3): 030203.
[5] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[6] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[7] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[8] Current transport and mass separation for an asymmetric fluctuation system with correlated noises
Jie Wang(王杰), Li-Juan Ning(宁丽娟). Chin. Phys. B, 2018, 27(1): 010501.
[9] Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel
Nur Izzati Ishak, S V Muniandy, Vengadesh Periasamy, Fong-Lee Ng, Siew-Moi Phang. Chin. Phys. B, 2017, 26(8): 088203.
[10] An image encryption scheme based on three-dimensional Brownian motion and chaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Ke Yuan(袁科), Yang Lu(路杨), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2017, 26(2): 020504.
[11] Current and efficiency optimization under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydiner. Chin. Phys. B, 2016, 25(9): 090501.
[12] Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation
Hong-Na Zhang(张红娜), Feng-Chen Li(李凤臣), Xiao-Bin Li(李小斌), Dong-Yang Li(李东阳), Wei-Hua Cai(蔡伟华), Bo Yu(宇波). Chin. Phys. B, 2016, 25(9): 094701.
[13] Hydrodynamics of passing-over motion during binary droplet collision in shear flow
Cheng-Yao Wang(王程遥), Cheng-Bin Zhang(张程宾), Xiang-Yong Huang(黄庠永), Xiang-Dong Liu(刘向东), Yong-Ping Chen(陈永平). Chin. Phys. B, 2016, 25(10): 108202.
[14] Current and efficiency of Brownian particles under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydıner. Chin. Phys. B, 2015, 24(4): 040501.
[15] Axisymmetric wave propagation in gas shear flow confined by a rigid-walled pipeline
Chen Yong (陈勇), Huang Yi-Yong (黄奕勇), Chen Xiao-Qian (陈小前), Bai Yu-Zhu (白玉铸), Tan Xiao-Dong (谭晓栋). Chin. Phys. B, 2015, 24(4): 044301.
No Suggested Reading articles found!