Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 040501    DOI: 10.1088/1674-1056/24/4/040501
GENERAL Prev   Next  

Current and efficiency of Brownian particles under oscillating forces in entropic barriers

Ferhat Nutku, Ekrem Aydıner
Theoretical Physics Research Group, Department of Physics, Faculty of Science, İstanbul University, Vezneciler, İstanbul, 34134, Turkey
Abstract  In this study, considering the temporarily unbiased force and different forms of oscillating forces, we investigate the current and efficiency of Brownian particles in an entropic tube structure and present numerically obtained results. We show that different force forms give rise to different current and efficiency profiles in different optimized parameter intervals. We find that an unbiased oscillating force and an unbiased temporal force lead to current and efficiency, which are dependent on these parameters. We also observe that the current and efficiency caused by temporal and different oscillating forces have maximum and minimum values in different parameter intervals. We conclude that the current or efficiency can be controlled dynamically by adjusting the parameters of entropic barriers and applied force.
Keywords:  entropic barrier      Brownian motion      Fick-Jacobs equation      efficiency of Brownian motor      stochastic processes  
Received:  16 August 2014      Revised:  11 November 2014      Accepted manuscript online: 
PACS:  05.40.Jc (Brownian motion)  
  05.10.Gg (Stochastic analysis methods)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: Project supported by the Funds from Istanbul University (Grant No. 45662).
Corresponding Authors:  Ferhat Nutku, Ekrem Aydıner     E-mail:  fnutku@istanbul.edu.tr;ekrem.aydiner@istanbul.edu.tr

Cite this article: 

Ferhat Nutku, Ekrem Aydıner Current and efficiency of Brownian particles under oscillating forces in entropic barriers 2015 Chin. Phys. B 24 040501

[1] Hänggi P 2009 Rev. Mod. Phys. 81 387
[2] Derényi I, Lee C and Barabási A L 1998 Phys. Rev. Lett. 80 1473
[3] Faucheux L P, Bourdieu L S, Kaplan P D and Libchaber A J 1995 Phys. Rev. Lett. 74 7
[4] Kettner C, Reimann P, Hänggi P and Müller F 2000 Phys. Rev. E 61 312
[5] Reguera D, Luque A, Burada P S, Schmid G, Rubí J M and Hänggi P 2012 Phys. Rev. Lett. 108 020604
[6] Müller F, Birner A, Schilling J, Gösele U, CH K and Hänggi P 2000 Phys. Status Solidi (a) 182 585
[7] Magnasco M O 1993 Phys. Rev. Lett. 71 1477
[8] Takagi F and Hondou T 1999 Phys. Rev. E 60 4954
[9] Sumithra K and Sintes T 2001 Physica A: Statistical Mechanics and Its Applications 297 1
[10] Dan D, Mahato M C and Jayannavar A 2001 Physica A: Statistical Mechanics and Its Applications 296 375
[11] Dan D and Jayannavar A M 2002 Phys. Rev. E 65 037105
[12] Sintes T and Sumithra K 2002 Physica A 312 86
[13] Xie H Z, Ai B Q, Liu X M, Liu L G and Li Z B 2009 Physica A: Statistical Mechanics and Its Applications 388 2093
[14] Reguera D and Rubi J M 2001 Phys. Rev. E 64 061106
[15] Reguera D, Schmid G, Burada P S, Rubí J M, Reimann P and Hanggi P 2006 Phys. Rev. Lett. 96 130603
[16] Burada P S, Schmid G, Reguera D, Rubí J M and Hänggi P 2007 Phys. Rev. E 75 051111
[17] Ai B Q and Liu L G 2006 Phys. Rev. E 74 051114
[18] Ai B Q, Xie H Z and Liu L G 2007 Phys. Rev. E 75 061126
[19] Siwy Z, Kosińska I D, Fuliński A and Martin C R 2005 Phys. Rev. Lett. 94 048102
[20] Kalman E, Healy K and Siwy Z S 2007 Europhys. Lett. 78 28002
[21] Burada P, Schmid G, Reguera D, Vainstein M, Rubi J and Hänggi P 2008 Phys. Rev. Lett. 101 130602
[22] Zeng C, Wang H and Gong A 2012 Journal of Statistical Mechanics: Theory and Experiment 2012 P07012
[23] Sang X, Xu J, Wang H and Zeng C 2013 Phys. Scr. 88 065002
[24] Zeng C H and Wang H 2012 Chin. Phys. B 21 050502
[25] Kamegawa H, Hondou T and Takagi F 1998 Phys. Rev. Lett. 80 5251
[26] Parrondo J and de Cisneros B 2002 Appl. Phys. A: Mater. Sci. & Process. 75 179
[27] Mathews J H 2014 “Simpson's Rule for Numerical Integration” http://mathfaculty.fullerton.edu/mathews//n2003/SimpsonsRuleMod.html accessed: 2014-03-18
[1] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[2] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[3] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[4] Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives
Hossam A. Ghany, Abd-Allah Hyder, M Zakarya. Chin. Phys. B, 2020, 29(3): 030203.
[5] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[6] Current transport and mass separation for an asymmetric fluctuation system with correlated noises
Jie Wang(王杰), Li-Juan Ning(宁丽娟). Chin. Phys. B, 2018, 27(1): 010501.
[7] Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel
Nur Izzati Ishak, S V Muniandy, Vengadesh Periasamy, Fong-Lee Ng, Siew-Moi Phang. Chin. Phys. B, 2017, 26(8): 088203.
[8] An image encryption scheme based on three-dimensional Brownian motion and chaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Ke Yuan(袁科), Yang Lu(路杨), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2017, 26(2): 020504.
[9] Current and efficiency optimization under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydiner. Chin. Phys. B, 2016, 25(9): 090501.
[10] Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
Wang Zhi-Gang (王志刚), Gao Rui-Mei (高瑞梅), Fan Xiao-Ming (樊晓明), Han Qi-Xing (韩七星). Chin. Phys. B, 2014, 23(9): 090201.
[11] Subcooled pool boiling heat transfer in fractal nanofluids:A novel analytical model
Xiao Bo-Qi (肖波齐), Yang Yi (杨毅), Xu Xiao-Fu (许晓赋). Chin. Phys. B, 2014, 23(2): 026601.
[12] Coupling effect of Brownian motion and laminar shear flow on colloid coagulation:a Brownian dynamics simulation study
Xu Sheng-Hua(徐升华), Sun Zhi-Wei(孙祉伟), Li Xu(李旭), and Jin Tong Wang . Chin. Phys. B, 2012, 21(5): 054702.
[13] Random-phase-induced chaos in power systems
Qin Ying-Hua(覃英华), Luo Xiao-Shu(罗晓曙), and Wei Du-Qu(韦笃取). Chin. Phys. B, 2010, 19(5): 050511.
[14] Behaviour of the current in a two-dimensional Büttiker-Landauer motor with entropic barriers
Liu Jiu-Liang(刘久亮) and He Ji-Zhou(何济洲). Chin. Phys. B, 2010, 19(3): 030504.
[15] Impulsive synchronization and control of directed transport in chaotic ratchets
Guo Liu-Xiao(过榴晓), Hu Man-Feng(胡满峰), and Xu Zhen-Yuan(徐振源). Chin. Phys. B, 2010, 19(2): 020512.
No Suggested Reading articles found!