Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 088203    DOI: 10.1088/1674-1056/26/8/088203

Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel

Nur Izzati Ishak1, S V Muniandy1,2, Vengadesh Periasamy3, Fong-Lee Ng4, Siew-Moi Phang4
1 Plasma Technology Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603, Malaysia;
2 Center for Theoretical Physics, Department of Physics, University of Malaya, Kuala Lumpur 50603, Malaysia;
3 Low Dimensional Materials Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603, Malaysia;
4 Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia

In this work, we study the regional dependence of transport behavior of microalgae Chlorella vulgaris inside microfluidic channel on applied fluid flow rate. The microalgae are treated as spherical naturally buoyant particles. Deviation from the normal diffusion or Brownian transport is characterized based on the scaling behavior of the mean square displacement (MSD) of the particle trajectories by resolving the displacements in the streamwise (flow) and perpendicular directions. The channel is divided into three different flow regions, namely center region of the channel and two near-wall boundaries and the particle motions are analyzed at different flow rates. We use the scaled Brownian motion to model the transitional characteristics in the scaling behavior of the MSDs. We find that there exist anisotropic anomalous transports in all the three flow regions with mixed sub-diffusive, normal and super-diffusive behavior in both longitudinal and transverse directions.

Keywords:  Brownian motion      anomalous transport      scaled Brownian motion      microfluidic      Chlorella vulgaris  
Received:  06 March 2017      Revised:  12 April 2017      Accepted manuscript online: 
PACS:  82.70.-y (Disperse systems; complex fluids)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  83.80.Hj (Suspensions, dispersions, pastes, slurries, colloids)  

Project supported by the Science Fund from the Ministry of Higher Education of Malaysia under the Fundamental Research Grant Scheme (Grant No. FRGS: FP057-2014A) and the Fund from the University of Malaya Research Grant (Grant No. UMRG: RP020A-14AFR).

Corresponding Authors:  Nur Izzati Ishak     E-mail:
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Nur Izzati Ishak, S V Muniandy, Vengadesh Periasamy, Fong-Lee Ng, Siew-Moi Phang Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel 2017 Chin. Phys. B 26 088203

[1] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[2] Lin J, Lin P, Chen H, Lin J, Lin P and Chen H 2009 Phys. Fluids 1221 0
[3] Chebbi R 2015 J. Biol. Phys. 41 313
[4] Chen Y L 2014 RSC Adv. 4 17908
[5] Ghosh S, Mugele F and Duits M H G 2015 Phys. Rev. E 91 052305
[6] Nutku F and Aydiner E 2015 Chin. Phys. B 24 040501
[7] van de Ven T G M 1977 J. Colloid Interface Sci. 62 352
[8] Compte A, Jou D and Katayama Y 1997 J. Phys. A: Math. Gen. 30 1023
[9] Bhattacharya S, Błwzdziewicz J and Wajnryb E 2006 Phys. Fluids 18
[10] Duits M H G, Ghosh S and Mugele F 2015 Langmuir 31 5869
[11] Katayama Y and Terauti R 1996 Eur. J. Phys. 17 136
[12] Yu Z, Wu T, Shao X, Lin J, Yu Z, Wu T, Shao X and Lin J 2013 Phys. Fluids 25 043305
[13] Katayama Y and Terauti R 1996 Eur. J. Phys. 17 136
[14] Apaza L and Sandoval M 2016 Phys. Rev. E 93 062602
[15] Yeo K and Maxey M R 2010 Europhys. Lett. 92 24008
[16] Eral H B, Van Den Ende D, Mugele F and Duits M H G 2009 Phys. Rev. E 80 061403
[17] Burada P S, Häggi P, Marchesoni F, Schmid G and Talkner P 2009 Chem. Phys. Chem. 10 45
[18] Jeon J H, Chechkin A V and Metzler R 2014 Phys. Chem. Chem. Phys. 16 15811
[19] Guzmá-Lastra F and Soto R 2013 Phys. Rev. E 87 042311
[20] Guigas G, Kalla C and Weiss M 2007 FEBS Lett. 581 5094
[21] Rogers S S, Waigh T a and Lu J R 2008 Biophys. J. 94 3313
[22] Bocquet L, Piasecki J and Hansen J P 1994 J. Stat. Phys. 76 505
[23] Cichocki B and Felderhof B U 1991 J. Chem. Phys. 94 556
[24] Imhof A and Dhont J K G 1995 Phys. Rev. E 52 6344
[25] Batchelor G K 1983 J. Fluid Mech. 131 155
[26] Mason T G and Weitz D A 1995 Phys. Rev. Lett. 74 1250
[27] Gimel J C and Nicolai T 2011 J. Phys.: Condens. Matter 23 234115
[28] Weiss M, Elsner M, Kartberg F and Nilsson T 2004 Biophys. J. 87 3518
[29] Goldsmith H L, Cokelet G R and Gaehtgens P 1989 Am. J. Physiol. Hear. Circ. Physiol. 257 H1005 LP-H1015
[30] Li H B, Jin L and Qiu B 2008 Chin. Phys. Lett. 25 4042
[31] Kleßnger U A, Wunderlich B K and Bausch A R 2013 T Microfluid. Nanofluidics 15 533
[32] Bardin D, Martz T D, Sheeran P S, Shih R, Dayton P A and Lee A P 2011 Lab. Chip 11 3990
[33] Beebe D J, Moore J S, Bauer J M, Yu Q, Liu R H, Devadoss C and Jo B H 2000 Nature 404 588
[34] Lee C Y, Chang C L, Wang Y N and Fu L M 2011 Int. J. Mol. Sci. 12 3263
[35] Sajeesh P and Sen A K 2014 Microfluid. Nanofluidics 7 1
[36] Xuan X, Zhu J and Church C 2010 Microfluid. Nanofluidics 9 1
[37] Meijering E, Dzyubachyk O and Smal I 2012 Methods. Enzymol. 504 183
[38] Tasadduq B, Wang G, El M, Mao W, Lam W, Alexeev A and Sulchek T 2015 Flow Meas. Instrum. 45 218
[39] Yukimoto N, Tsutsui M, He Y, Shintaku H, Tanaka S, Kawano S, Kawai T and Taniguchi M 2013 Sci. Rep. 3 1855
[40] Al-lwayzy S H, Yusaf T and Al-Juboori R A 2014 Energies 7 1829
[41] Sharma K K, Schuhmann H and Schenk P M 2012 H Energies 5 1532
[42] Bolhouse A M 2010 "Rheology of Algae Slurries", Master Thesis (University of Texas, USA)
[43] Souliés A, Pruvost J, Legrand J, Castelain C and Burghelea T I 2013 Rheol. Acta 52 589
[44] Leupold M, Hindersin S, Gust G, Kerner M and Hanelt D 2013 J. Appl. Phycol. 25 485
[45] Lim S C and Muniandy S V 2002 Phys. Rev. E 66 021114
[46] Van Kampen N G 2007 Stochastic Processes in Physics and Chemistry (Amsterdam: Elsevier) pp. 326-362
[47] Bodrova A S, Chechkin A V, Cherstvy A G, Safdari H, Sokolov I M and Metzler R 2016 Sci. Rep. 6 30520
[48] Vonshak A and Borowitzka M A 1991 Laboratory Manual: Research Seminar and Workshop on Mass Cultures of Microalgae (Silpakorn University, Thailand) p. 40
[49] Cieśla J, Bieganowski A, Janczarek M and Urbanik-Sypniewska T 2011 J. Microbiol. Methods 85 199
[50] Vandamme D, Foubert I and Muylaert K 2013 Trends Biotechnol. 31 233
[51] Ferreira C, Pereira A M, Pereira M C, Melo L F and Simões M 2011 J. Antimicrob. Chemother. 66 1036
[52] Tinevez J Y, Perry N, Schindelin J, Hoopes G M, Reynolds G D, Laplantine E, Bednarek S Y, Shorte S L and Eliceiri K W 2017 Methods 115 80
[53] Gupta A, Chow L, Kumar R and Ladd A 2009 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, January 5-8, 2009, Orlando, Florida, USA, pp 1-14
[54] Loisel V, Abbas M, Masbernat O and Climent E 2015 Phys. Fluids 27 0123304
[55] Holzer L, Bammert J, Rzehak R and Zimmermann W 2010 Phys. Rev. E 81 041124
[56] Maxey M R and Riley J J 1983 Phys. Fluids 26 883
[57] Sapsis T P, Ouellette N T, Gollub J P and Haller G 2011 Phys. Fluids 23 093304
[58] Ashwin P, Orosz G and Borresen J 2010 Nonlinear Dynamics and Chaos: Advances and Perspectives (Berlin: Springer-Verlag) p. 51
[1] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[2] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[3] Biophysical model for high-throughput tumor and epithelial cell co-culture in complex biochemical microenvironments
Guoqiang Li(李国强), Yanping Liu(刘艳平), Jingru Yao(姚静如), Kena Song(宋克纳), Gao Wang(王高), Lianjie Zhou(周连杰), Guo Chen(陈果), and Liyu Liu(刘雳宇). Chin. Phys. B, 2022, 31(2): 028703.
[4] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[5] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[6] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[7] Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives
Hossam A. Ghany, Abd-Allah Hyder, M Zakarya. Chin. Phys. B, 2020, 29(3): 030203.
[8] Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid
Qi Liu(刘琦), Yu-Feng Yu(俞钰峰), Wen-Sheng Zhao(赵文生), Hui Li(李慧). Chin. Phys. B, 2020, 29(1): 010701.
[9] Numerical simulation on dynamic behaviors of bubbles flowing through bifurcate T-junction in microfluidic device
Liang-Yu Wu(吴梁玉), Ling-Bo Liu(刘凌波), Xiao-Tian Han(韩笑天), Qian-Wen Li(李倩文), Wei-Bo Yang(杨卫波). Chin. Phys. B, 2019, 28(10): 104702.
[10] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[11] Surface-tension-confined droplet microfluidics
Xinlian Chen(陈新莲), Han Wu(伍罕), Jinbo Wu(巫金波). Chin. Phys. B, 2018, 27(2): 029202.
[12] Controlled generation of cell-laden hydrogel microspheres with core-shell scaffold mimicking microenvironment of tumor
Yuenan Li(李岳南), Miaomiao Hai(海苗苗), Yu Zhao(赵宇), Yalei Lv(吕亚蕾), Yi He(何益), Guo Chen(陈果), Liyu Liu(刘雳宇), Ruchuan Liu(刘如川), Guigen Zhang. Chin. Phys. B, 2018, 27(12): 128703.
[13] Current transport and mass separation for an asymmetric fluctuation system with correlated noises
Jie Wang(王杰), Li-Juan Ning(宁丽娟). Chin. Phys. B, 2018, 27(1): 010501.
[14] Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology
Qi-Zhang Huang(黄启章), Yan-Qing Zhu(朱艳青), Ji-Fu Shi(史继富), Lei-Lei Wang(王雷雷), Liu-Wen Zhong(钟柳文), Gang Xu(徐刚). Chin. Phys. B, 2017, 26(3): 038401.
[15] An image encryption scheme based on three-dimensional Brownian motion and chaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Ke Yuan(袁科), Yang Lu(路杨), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2017, 26(2): 020504.
No Suggested Reading articles found!