Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010501    DOI: 10.1088/1674-1056/27/1/010501
GENERAL Prev   Next  

Current transport and mass separation for an asymmetric fluctuation system with correlated noises

Jie Wang(王杰), Li-Juan Ning(宁丽娟)
School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China
Abstract  We discuss the transport of an underdamped particle driven by an external fluctuation force in a spatially periodic asymmetric potential with correlated noises. The corresponding mathematical model is established. The movement of the steady current of an underdamped particle is presented by the method of the numerical simulation. It is indicated that the value of the current may be negative, zero, or positive. The external fluctuation force and correlated noises can effect the current direction. Under the appropriate parameters, the correlated noises intensity may even raise a reversal of the current. Besides, we have noticed a phenomenon that particles with different weight have different directions during movement by the impact of the correlated noises and external fluctuation force. Therefore, the Brownian particles can be effectively separated according to their masses.
Keywords:  current transport      correlated noises      fluctuation force      Brownian motion  
Received:  05 June 2017      Revised:  06 October 2017      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.Ey (Stochastic processes)  
Fund: Projected supported by the National Natural Science Foundation of China (Grant No. 11202120) and the Fundamental Research Funds for the Central Universities of China (Grant Nos. GK201502007 and GK201701001).
Corresponding Authors:  Li-Juan Ning     E-mail:  ninglijuan@snnu.edu.cn

Cite this article: 

Jie Wang(王杰), Li-Juan Ning(宁丽娟) Current transport and mass separation for an asymmetric fluctuation system with correlated noises 2018 Chin. Phys. B 27 010501

[1] Liu C and Wu D J 2000 Phys. Rev. E 62 7478
[2] Borromeo M and Marchesoni F 2007 Phys. Rev. E 68 783
[3] Ma H, Gao S L, Zhong S C and Wei K 2012 Acta Phys. Sin. 61 180510 (in Chinese)
[4] Zeng C H and Wang H 2012 Ecol. Model 233 52
[5] Han Q L, Yang T, Zeng C H, Wang H, Liu Z Q, Fua Y C, Zhang C and Tian D 2014 Phys. A 408 96
[6] Liu J, Wang Y G, Zhai Q Q and Liu J 2016 Chin. Phys. B 25 100501
[7] Guo Y L, Wang J C, Wang Z J, Tang S and Zhou Y H 2012 Acta Phys. Sin. 61 146401 (in Chinese)
[8] Luczka J, Bartussek R and Hänggi P 1995 EPL 31 431
[9] Jia Y and Li J R 2000 Int. J. Mod. Phys. B 14 507
[10] Madureira A J R, Hänggi P and Wio H S 1996 Phys. Lett. A 217 248
[11] Wu D J, Yang M and Li X L 2012 Acta Phys. Sin. 61 160502 (in Chinese)
[12] Magnasco M O and Stolovitzky G 1998 J. Stat. Phys. 93 615
[13] Li H T and Qin W Y 2016 Chin. Phys. B 25 110503
[14] Jung P, Kissner J G and Hänggi P 1996 Phys. Rev. Lett. 76 3436
[15] Fan L M, Lü M T, Huang R Z, Gao T F and Zheng Z G 2017 Acta Phys. Sin. 66 010501 (in Chinese)
[16] Zhang J Q, Huang S F, Pang S T, Wang M S and Gao S 2015 Chin. Phys. Lett. 32 120502
[17] Borromeo M and Marchesoni F 2007 Phys. Rev. Lett. 99 150605
[18] Kong L W, Wan R Z and Fang H P 2016 Chin. Phys. Lett. 33 20501
[19] Wang L Z, Chen X and Zhao W L 2012 Acta Phys. Sin. 61 160501 (in Chinese)
[20] Ertas D 1998 Phys. Rev. Lett. 80 1548
[21] Nutku F and Aydiner E 2016 Chin. Phys. B 25 090501
[22] Xia Y, Ku X K and Shen S H 2016 Acta Phys. Sin. 65 194702 (in Chinese)
[23] Feng Y L, Dong J M and Tang X L 2016 Chin. Phys. Lett. 33 108701
[24] Marchesoni F 1997 Phys. Lett. A 231 61
[25] Ai B Q and Liu L G 2007 Phys. Rev. E 76 042103
[26] Machura L, Kostur M, Talkner P, Luczka J and Hänggi P 2007 Phys. Rev. Lett. 98 040601
[27] Gomez-Marin A and Sancho J M 2008 Phys. Rev. E 77 031108
[28] Zeng C H, Gong A L and Tian Y F 2010 Phys. A 389 1971
[29] Kong L W, Wan R Z and Fang H P 2016 Chin. Phys. Lett. 33 20501
[30] Ai B Q, Xie H Z and Liu L G 2005 Eur. Phys. J. B 47 109
[31] Ai B, Wang X, Liu G, Wen D, Xie H, Chen W and Liu L 2003 Phys. Rev. E 68 061105
[32] Borromeo M, Giusepponi S and Marchesoni F 2006 Phys. Rev. E 74 031121
[33] Gomez-Marin A and Sancho J M 2006 Phys. Rev. E 74 062102
[34] Kim S J, Park S H and Ryu C S 1997 Phys. Rev. Lett. 79 2911
[35] Nie L R and Mei D C 2009 Phys. Lett. A 373 3816
[36] Luo Y H and Xie C W 2009 Phys. Lett. A 373 3217
[37] Li J H, Luczka J and Hänggi P 2001 Phys. Rev. E 64 011113
[38] Honeycutt R L 1992 Phys. Rev. A 45 600
[39] Ramirez-Piscina L, Sancho J M and Hernández-Machado A 1993 Phys. Rev. B 48 125
[40] Kettner C, Reimann P, Hänggi P and Muller F 2000 Phys. Rev. E 61 312
[41] Henningsen U and Schliwa M 1997 Nature 93 389
[42] Li J H and Huang Z Q 1998 Phys. Rev. E 57 3917
[1] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[2] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[3] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[4] Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives
Hossam A. Ghany, Abd-Allah Hyder, M Zakarya. Chin. Phys. B, 2020, 29(3): 030203.
[5] Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况). Chin. Phys. B, 2019, 28(3): 037302.
[6] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[7] Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel
Nur Izzati Ishak, S V Muniandy, Vengadesh Periasamy, Fong-Lee Ng, Siew-Moi Phang. Chin. Phys. B, 2017, 26(8): 088203.
[8] An image encryption scheme based on three-dimensional Brownian motion and chaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Ke Yuan(袁科), Yang Lu(路杨), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2017, 26(2): 020504.
[9] Current and efficiency optimization under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydiner. Chin. Phys. B, 2016, 25(9): 090501.
[10] Current and efficiency of Brownian particles under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydıner. Chin. Phys. B, 2015, 24(4): 040501.
[11] Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range
Wu Mei (武玫), Zheng Da-Yong (郑大勇), Wang Yuan (王媛), Chen Wei-Wei (陈伟伟), Zhang Kai (张凯), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(9): 097307.
[12] Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
Wang Zhi-Gang (王志刚), Gao Rui-Mei (高瑞梅), Fan Xiao-Ming (樊晓明), Han Qi-Xing (韩七星). Chin. Phys. B, 2014, 23(9): 090201.
[13] Subcooled pool boiling heat transfer in fractal nanofluids:A novel analytical model
Xiao Bo-Qi (肖波齐), Yang Yi (杨毅), Xu Xiao-Fu (许晓赋). Chin. Phys. B, 2014, 23(2): 026601.
[14] Current transport in ZnO/Si heterostructure grown by laser molecular beam epitaxy
Teng Xiao-Yun (滕晓云), Wu Yan-Hua (吴艳华), Yu Wei (于威), Gao Wei (高卫), Fu Guang-Sheng (傅广生). Chin. Phys. B, 2012, 21(9): 097105.
[15] Coupling effect of Brownian motion and laminar shear flow on colloid coagulation:a Brownian dynamics simulation study
Xu Sheng-Hua(徐升华), Sun Zhi-Wei(孙祉伟), Li Xu(李旭), and Jin Tong Wang . Chin. Phys. B, 2012, 21(5): 054702.
No Suggested Reading articles found!