Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 024101    DOI: 10.1088/1674-1056/24/2/024101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method

Wang Yue (王玥)a, Wang Jian-Guo (王建国)a b, Chen Zai-Gao (陈再高)a b
a Northwest Institute of Nuclear Technology, P. O. Box 69-1, Xi'an 710024, China;
b School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Based on conformal construction of physical model in a three-dimensional Cartesian grid, an integral-based conformal convolutional perfectly matched layer (CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain (ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor (PEC) waveguide. The algorithm has the same numerical stability as the ECT-CFDTD method. For the long-time propagation problems of an evanescent wave in a waveguide, several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML. Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide.
Keywords:  enlarged cell technique      conformal      finite-difference time-domain      convolutional perfectly matched layer  
Received:  03 May 2014      Revised:  02 July 2014      Accepted manuscript online: 
PACS:  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61231003).
Corresponding Authors:  Wang Jian-Guo     E-mail:  wanguiuc@mail.xjtu.edu.cn

Cite this article: 

Wang Yue (王玥), Wang Jian-Guo (王建国), Chen Zai-Gao (陈再高) Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method 2015 Chin. Phys. B 24 024101

[1] Yee K S 1966 IEEE Trans. Anten. Propag. 14 302
[2] Cangellaris A C and Wright D B 1991 IEEE Trans. Anten. Propag. 39 1518
[3] Dey S and Mittra R 1997 IEEE Microwave and Guided Wave Letters 7 273
[4] Jurgens T G and Taflove A 1993 IEEE Trans. Anten. Propag. 41 1703
[5] Yu W and Mittra R 2000 Microw. Opt. Technol. Lett. 27 136
[6] Chen J and Wang J 2007 IEEE Trans. Anten. Propag. 55 3613
[7] Xiao T and Liu Q H 2004 IEEE Microwave and Wireless Components Letters 14 551
[8] Xiao T and Liu Q H 2008 IEEE Microwave and Wireless Components Letters 18 765
[9] Berenger J P 1994 J. Comput. Phys. 114 185
[10] Berenger J P 1998 IEEE Microwave and Guided Wave Letters 8 188
[11] Berenger J P 1999 IEEE Trans. Anten. Propag. 47 1497
[12] Berenger J P 1996 IEEE Trans. Anten. Propag. 44 110
[13] Berenger J P 1997 IEEE Trans. Anten. Propag. 45 446
[14] Berenger J P 2002 IEEE Microwave and Wireless Components Letters 12 218
[15] Kuzuoglu M and Mittra R 1996 IEEE Microwave and Guided Wave Letters 6 447
[16] Roden J A and Gedney S D 2000 Microw. Opt. Technol. Lett. 27 334
[17] Wang J, Wang Y and Zhang D 2006 IEEE Trans. Plasma Sci. 34 681
[18] Chen J and Wang J 2013 J. Appl. Comput. Electromag. Soc. 28 680
[19] Wang J, Zhang D, Liu C, Li Y, Wang Y, Wang H, Qiao H and Li X 2009 Phys. Plasmas 16 033108
[20] Wang J, Chen Z, Wang Y, Zhang D, Liu C, Li Y, Wang H, Qiao H, Fu M and Yuan Y 2010 Phys. Plasmas 17 073107
[21] Chen Z G, Wang J G, Wang Y, Qiao H L, Guo W J and Zhang D H 2014 Chin. Phys. B 23 068701
[22] Wang Y, Wang J G and Zhang D H 2005 High Power Laser and Particle Beams 17 1557
[23] www.opencascade.org
[24] Wang Y, Fu M Y, Chen Z G, Cai L B, Xie H Y and Wang J G 2011 High Power Laser and Particle Beams 23 2994
[1] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[2] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[3] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[4] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
[5] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[6] Second order conformal multi-symplectic method for the damped Korteweg-de Vries equation
Feng Guo(郭峰). Chin. Phys. B, 2019, 28(5): 050201.
[7] Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation
Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南). Chin. Phys. B, 2019, 28(5): 058503.
[8] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[9] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[10] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
[11] Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays
Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生). Chin. Phys. B, 2018, 27(10): 100204.
[12] Aberration correction of conformal dome based on rotated cylindrical lenses for ultra-wide field of regard
Linyao Yu(虞林瑶), Yongfeng Hong(洪永丰), Zhifeng Cheng(程志峰), Bao Zhang(张保). Chin. Phys. B, 2018, 27(1): 014202.
[13] Analytical capacitance model for 14 nm FinFET considering dual-k spacer
Fang-Lin Zheng(郑芳林), Cheng-Sheng Liu(刘程晟), Jia-Qi Ren(任佳琪), Yan-Ling Shi(石艳玲), Ya-Bin Sun(孙亚宾), Xiao-Jin Li(李小进). Chin. Phys. B, 2017, 26(7): 077303.
[14] Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method
Xiu-Rong Ma(马秀荣), Lin Xu(徐林), Shi-Yuan Chang(常世元), Shuang-Gen Zhang(张双根). Chin. Phys. B, 2017, 26(4): 044201.
[15] Finite-difference time-domain modeling of curved material interfaces by using boundary condition equations method
Jia Lu(卢佳), Huaichun Zhou(周怀春). Chin. Phys. B, 2016, 25(9): 090203.
No Suggested Reading articles found!