A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
Liu Ya-Wen (刘亚文), Chen Yi-Wang (陈亦望), Zhang Pin (张品), Liu Zong-Xin (刘宗信)
National Key Laboratory on Electromagnetic Environment and Electro-optical Engineering, PLA University of Science and Technology, Nanjing 210007, China
Abstract A higher-order finite-difference time-domain (HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spherical resonator is modeled in order to demonstrate the advantage of this scheme over the finite-difference time-domain (FDTD) and the multiresolution time-domain (MRTD) schemes with respect to memory requirements and CPU time. Moreover, the Berenger's perfectly matched layer (PML) is derived for the spherical HO-FDTD grids, and the numerical results validate the efficiency of the PML.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.