Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124102    DOI: 10.1088/1674-1056/23/12/124102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer

Liu Ya-Wen (刘亚文), Chen Yi-Wang (陈亦望), Zhang Pin (张品), Liu Zong-Xin (刘宗信)
National Key Laboratory on Electromagnetic Environment and Electro-optical Engineering, PLA University of Science and Technology, Nanjing 210007, China
Abstract  A higher-order finite-difference time-domain (HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spherical resonator is modeled in order to demonstrate the advantage of this scheme over the finite-difference time-domain (FDTD) and the multiresolution time-domain (MRTD) schemes with respect to memory requirements and CPU time. Moreover, the Berenger's perfectly matched layer (PML) is derived for the spherical HO-FDTD grids, and the numerical results validate the efficiency of the PML.
Keywords:  higher-order finite-difference time-domain      spherical coordinates      stability      numerical dispersion      perfectly matched layer  
Received:  02 April 2014      Revised:  07 May 2014      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61301063 and 41305017).
Corresponding Authors:  Liu Ya-Wen     E-mail:  liuyawen1111@163.com

Cite this article: 

Liu Ya-Wen (刘亚文), Chen Yi-Wang (陈亦望), Zhang Pin (张品), Liu Zong-Xin (刘宗信) A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer 2014 Chin. Phys. B 23 124102

[1]Manry C W, Broschat S L and Schneider J B 1995 Appl. Comput. Electromagn. Soc. J. 10 17
[2]Young J L 1996 IEEE Trans. Anten. Propag. 44 1283
[3]Roberts A R and Joubert J 1997 Electron. Lett. 33 32
[4]Hadi M F and Piket-May M 1997 IEEE Trans. Anten. Propag. 45 254
[5]Lan K, Liu Y and Lin W 1999 IEEE Trans. Electromag. Compatibility 41 160
[6]Zhang J and Chen Z 2000 IEEE Anten. Propag. Soc. Int. Symp., Salt Lake City, USA, p. 1510
[7]Hirono T, Lui W, Seki S and Yoshikuni Y 2001 IEEE Trans. Microw. Theory Tech. 49 1640
[8]Shao Z H, Shen Z X, He Q Y and Wei G W 2003 IEEE Trans. Microw. Theory Tech. 51 856
[9]Kantartzis N V and Tsiboukis T D 2004 IEEE Trans. Electromag. Compatibility 46 2
[10]Shlager K L and Schneider J B 2004 IEEE Trans. Anten. Propag. 52 1095
[11]Chun S T and Choe J Y 2005 IEEE Trans. Anten. Propag. 53 2237
[12]Wang S, Shao Z and Wen G 2007 IEEE Microwave Wireless Compon. Lett. 17 316
[13]Chen Y W, Liu Y W, Chen B and Zhang P 2013 IEEE Trans. Anten. Propag. 61 4695
[14]Taflove A Computational Electrodynamics: The Finite-Difference Time-Domain Method (Boston: Artech House)
[15]Cheong Y W, Lee Y M, Ra K H, Kang J G and Shin C C 1999 IEEE Microwave Guid Wave Lett. 9 297
[16]Fujii M and Hoefer W J R 2000 IEEE Microwave Guid Wave Lett. 10 125
[17]Daubechies I 1992 Ten Lectures on Wavelets (Philadelphia, PA: SIAM)
[18]Holland R 1983 IEEE Trans. Nucl. Sci. 30 4592
[19]Krumpholz M and Katehi Linda P B 1996 IEEE MTT 44 555
[20]Teixeira F L and Chew W C 1997 IEEE Microwave Guide Wave Lett. 7 285
[21]Potter M E, Okoniewski M and Stuchly M A 2002 IEEE Microwave Wireless Compon. Lett. 12 142
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[11] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
No Suggested Reading articles found!