Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 090203    DOI: 10.1088/1674-1056/25/9/090203
GENERAL Prev   Next  

Finite-difference time-domain modeling of curved material interfaces by using boundary condition equations method

Jia Lu(卢佳), Huaichun Zhou(周怀春)
Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
Abstract  To deal with the staircase approximation problem in the standard finite-difference time-domain (FDTD) simulation, the two-dimensional boundary condition equations (BCE) method is proposed in this paper. In the BCE method, the standard FDTD algorithm can be used as usual, and the curved surface is treated by adding the boundary condition equations. Thus, while maintaining the simplicity and computational efficiency of the standard FDTD algorithm, the BCE method can solve the staircase approximation problem. The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders. The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors. Moreover, the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities.
Keywords:  finite-difference time-domain      curved surface      staircase error      boundary condition equation  
Received:  15 March 2016      Revised:  12 May 2016      Accepted manuscript online: 
PACS:  02.60.-x (Numerical approximation and analysis)  
  02.70.-c (Computational techniques; simulations)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  46.15.-x (Computational methods in continuum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51025622).
Corresponding Authors:  Huaichun Zhou     E-mail:  hczh@mail.tsinghua.edu.cn

Cite this article: 

Jia Lu(卢佳), Huaichun Zhou(周怀春) Finite-difference time-domain modeling of curved material interfaces by using boundary condition equations method 2016 Chin. Phys. B 25 090203

[1] Warnick K F and Chew W C 2001 Waves Random Media 11 R1
[2] Jin L, Zhu Q Y, Fu Y Q and Yu W X 2013 Chin. Phys. B 22 104101
[3] Li J, Guo L X, Zeng H and Han X B 2009 Chin. Phys. B 18 2757
[4] Li Q B, Wu R X, Yang Y and Sun H L 2013 Chin. Phys. Lett. 30 074208
[5] Liang C, Xu Y M and Wang Z J 2008 Chin. Phys. Lett. 25 3712
[6] Zhan C L, Ren X F, Huang Y F, Duan K M and Guo G C 2008 Chin. Phys. Lett. 25 0559
[7] Lou S, Tsang L, Chan C and Ishimaru A 1990 Microw. Opt. Technol. Lett. 3 150
[8] Hastings F D, Schneider J B and Broschat S L 1995 IEEE Trans. Antennas Propagal. 43 1183
[9] Lou S, Tsang L and Chan C 1991 Waves Random Media 1 287
[10] Krause K, Lou S, Tsang L and Chan C 1991 Microw. Opt. Technol. Lett. 4 255
[11] Devayya R and Wingham D 1992 IEEE Trans. Geosci. Remote Sensing 30 645
[12] Tsang L, Lou S and Chan C 1991 Microw. Opt. Technol. Lett. 4 527
[13] Taflove A and Hagness S C 2005 Computational Electrodynamics (Artech House)
[14] Elsherbeni A Z and Demir V 2009 The Finite-difference Time-domain Method for Electromagnetics with MATLAB Simulations (Raleigh, NC: SciTech Pub)
[15] Liu S B and Liu S Q 2004 Chin. Phys. 13 1892
[16] Shen J, Sha W, Huang Z X, Chen M S and Wu X L 2012 Acta Phys. Sin. 61 190202 (in Chinese)
[17] Liu Y W, Chen Y W, Zhang P and Liu Z X 2014 Chin. Phys. B 23 124102
[18] Schneider J B and Shlager K L 1997 IEEE Trans. Antennas Propagal. 45 1830
[19] Mohammadi A, Nadgaran H and Agio M 2005 Opt. Express 13 103671
[20] Hao Y and Railton C J 1998 IEEE Trans. Microwave Theory Tech. 46 82
[21] Fusco M 1990 IEEE Trans. Antennas Propagal. 38 76
[22] Jurgens T, Taflove A, Umashankar K and Moore T 1992 IEEE Trans. Antennas Propagal. 40 357
[23] Railton C J, Craddock I and Schneider J B 1995 Electron. Lett. 31 1585
[24] Kosmanis T and Tsiboukis T D 2003 IEEE Trans. Microwave Theory Tech. 51 839
[25] Oskooi A F, Kottke C and Johnson S G 2009 Opt. Lett. 34 2778
[26] Liu D C and Chang H C 2012 IEEE Trans. Antennas Propagal. 60 5259
[27] Farjadpour A, Roundy D, Rodriguez A, Ibanescu M, Bermel P, Joannopoulos J, Johnson S G and Burr G 2006 Opt. Lett. 31 2972
[28] Kottke C, Farjadpour A and Johnson S G 2008 Phys. Rev. E 77 036611
[29] Ditkowski A, Dridi K and Hesthaven J S 2001 J. Comput. Phys. 170 39
[30] Xiao T and Liu Q H 2004 IEEE Trans. Antennas Propagal. 52 730
[31] Jackson J D 1962 Classical Electrodynamics (New York: Wiley)
[32] Hwang K P and Cangellaris A C 2001 IEEE Microw. Wirel. Compon. Lett. 11 158
[33] Balanis C A 2012 Advanced Engineering Electromagnetics (Vol. 111) (Wiley Online Library)
[34] Bourlier C, Pinel N and Kubické G 2013 Method of Moments for 2D Scattering Problems: Basic Concepts and Applications (John Wiley & Sons)
[35] Harrington R F 1961 Time-harmonic Electromagnetic Fields (McGraw-Hill)
[36] Kerker M 1969 The Scattering of Light (New York: Academic Press)
[37] Bohren C F and Huffman D R 2008 Absorption and Scattering of Light by Small Particles (John Wiley & Sons)
[1] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[2] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
[3] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[4] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[5] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
[6] Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays
Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生). Chin. Phys. B, 2018, 27(10): 100204.
[7] Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method
Xiu-Rong Ma(马秀荣), Lin Xu(徐林), Shi-Yuan Chang(常世元), Shuang-Gen Zhang(张双根). Chin. Phys. B, 2017, 26(4): 044201.
[8] Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method
Hu Dou(窦虎), Hongmei Ma(马红梅), Yu-Bao Sun(孙玉宝). Chin. Phys. B, 2016, 25(9): 094221.
[9] A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index
Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林). Chin. Phys. B, 2016, 25(3): 037303.
[10] An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme
Wei Xiao-Kun (魏晓琨), Shao Wei (邵维), Shi Sheng-Bing (石胜兵), Zhang Yong (张勇), Wang Bing-Zhong (王秉中). Chin. Phys. B, 2015, 24(7): 070203.
[11] Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method
Wang Yue (王玥), Wang Jian-Guo (王建国), Chen Zai-Gao (陈再高). Chin. Phys. B, 2015, 24(2): 024101.
[12] Enhanced light absorption of silicon in the near-infrared band by designed gold nanostructures
Liu Ju (刘菊), Zhong Xiao-Lan (钟晓岚), Li Zhi-Yuan (李志远). Chin. Phys. B, 2014, 23(4): 047306.
[13] A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
Liu Ya-Wen (刘亚文), Chen Yi-Wang (陈亦望), Zhang Pin (张品), Liu Zong-Xin (刘宗信). Chin. Phys. B, 2014, 23(12): 124102.
[14] Ultra-elongated depth of focus of plasmonic lenses with concentric elliptical slits under Gaussian beam illumination
Wang Jing (王婧), Fu Yong-Qi (付永启). Chin. Phys. B, 2013, 22(9): 090206.
[15] Electronic states and shape of silicon quantum dots
Huang Wei-Qi (黄伟其), Miao Xing-Jian (苗信建), Huang Zhong-Mei (黄忠梅), Cheng Han-Qiong (陈汉琼), Shu Qin (苏琴). Chin. Phys. B, 2013, 22(6): 064207.
No Suggested Reading articles found!