Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 047101    DOI: 10.1088/1674-1056/21/4/047101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The stabilities, electronic structures and elastic properties of Rb–As systems

Havva Bogaz Ozisika)b)†, Kemal Colakoglua), Engin Deligozb), and Haci Ozisikb)
a. Gazi University, Science Faculty, Physics Department, 06500, Teknikokullar, Ankara, Turkey;
b. Aksaray University, Faculty of Arts and Science, Physics Department, 68100, Campus, Aksaray, Turkey
Abstract  The structural, electronic and elastic properties of Rb-As systems (RbAs in NaP, LiAs and AuCu structures, RbAs2 in the MgCu2 structure, Rb3As in Na3As, Cu3P and Li3Bi structures, and Rb5As4 in the A5B4 structure) are investigated with the generalized gradient approximation in the frame of density functional theory. The lattice parameters, cohesive energies, formation energies, bulk moduli and the first derivatives of the bulk moduli (to fit Murnaghan's equation of state) of the considered structures are calculated and reasonable agreement is obtained. In addition, the phase transition pressures are also predicted. The electronic band structures, the partial densities of states corresponding to the band structures and the charge density distributions are presented and analysed. The second-order elastic constants based on the stress-strain method and other related quantities such as Young's modulus, the shear modulus, Poisson's ratio, sound velocities, the Debye temperature and shear anisotropy factors are also estimated.
Keywords:  ab-initio calculations      structural properties      electronic properties      elastic properties      Rb-As compounds  
Received:  29 September 2011      Revised:  29 September 2011      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  62.20.-x (Mechanical properties of solids)  
Corresponding Authors:  Havva Bogaz Ozisik,havva.bogaz@gazi.edu.tr     E-mail:  havva.bogaz@gazi.edu.tr

Cite this article: 

Havva Bogaz Ozisik, Kemal Colakoglu, Engin Deligoz, and Haci Ozisik The stabilities, electronic structures and elastic properties of Rb–As systems 2012 Chin. Phys. B 21 047101

[1] Xu W G and Jin B 2006 J. Mol. Struc. Theochem 759 101
[2] Burtzlaff S, Holynska M and Dehnen S 2010 Z. Anorg. Allg. Chem. 636 1691
[3] Tegze M and Hafner J 1992 J. Phys.: Condens. Matter 4 2449
[4] Derrien G, Tillard M, Manteghetti A and Belin C 2003 Z. Anorg. Allg. Chem. 629 1601
[5] Ettema A R H F and de Groot R A 1999 J. Phys.: Condens. Matter 11 759
[6] Hirt H and Deiseroth H 2004 Z. Anorg. Allg. Chem. 630 1357
[7] Yan J Q, Nandi S, Zarestky J L, Tian W, Kreyssig A, Jensen B, Kracher A, Dennis K W, McQueeney R J, Goldman A I, McCallum R W and Lograsso T A 2009 Appl. Phys. Lett. 95 222504
[8] Chen Z G, Yuan R H, Dong T and Wang N L 2010 Phys. Rev. B 81 100502
[9] Dong T, Chen Z G, Yuan R H, Hu B F, Cheng B and Wang N L 2010 Phys. Rev. B 82 054522
[10] Sangster J and Pelton A D 1993 J. Phase Equilibria 14 243
[11] Emmerling F and Röhr C 2002 Z. Naturforsch B 57 963
[12] Gnutzmann G, Dorn F W and Klemm W 1961 Zeitschrift fuer Anorganische und Allgemeine Chemie 309 210
[13] Honle W, Krogull G, Peters K and Von Schering H G 1999 Kristallogr. 214 17
[14] Honle W, Buresch J, Wolf J, Peters K, Chang J H and Von Schering H G 2002 Z. Kristallogr. 217 489
[15] Emmerling F and Röhr C 2003 Z. Anorg. Allg. Chem. 629 467
[16] Igel-Mann G and Stoll H 1994 Compd. Mater. Sci. 2 413
[17] Kresse G and Hafner J 1994 Phys. Rev. B 47 558
[18] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[19] Kresse G and Furthmuller J 1996 Compd. Mater. Sci. 6 15
[20] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Blochl P E 1994 Phys. Rev. B 50 17953
[23] Murnaghan F D 1937 Am. J. Math. 49 235
[24] Maradudin A A, Montroll E W, WeissG H and Ipatova I P 1971 Theory of Lattice Dynamics in the Harmonic Approximation 2nd edn. (New York, London: Academic Press)
[25] Page Y L and Saxe P 2001 Phys. Rev. B 63 174103
[26] Ozisik H, Colakoglu K, Ozisik H B and Deligoz E 2011 Compd. Mater. Sci. 50 349
[27] Wu Z, Zhao E, Xiang H, Hao X, Liu X and Meng J 2007 Phys. Rev. B 76 054115
[28] Hill R 1952 Proc. Phys. Soc. Lond. 65 349
[29] Voigt W 1928 Lehrburch der Kristallphysik (Leipzig: Teubner)
[30] Reuss A 1929 Z. Angew. Math. Mech. 9 49
[31] Söderlind P and Klepeis J E 2009 Phys. Rev. B 79 104110
[32] Florez M, Recio J M, Francisco E, Blanco M A and Pend鄐 A M 2002 Phys. Rev. B 66 144112
[33] Bannikov V V, Shein I R and Ivanovskii A L 2008 Phys. Status Solidi R1 89
[34] Fu H, Li D, Peng F, Gao T and Cheng X 2008 Compd. Mater. Sci. 44 774
[35] Pugh S F 1954 Philos. Mag. 45 823
[36] Shein I R and Ivanovskii A L 2008 J. Phys.: Condens. Mater. 20 415218
[37] Johnston L, Keeler G, Rollins R and Spicklemire S 1996 Solid State Physics Simulations, The Consortium for Upper-Level Physics Software (New York: Jhon Wiley)
[38] Schreiber E, Anderson O L and Soga N 1973 Elastic Constants and Their Measurements (New York: McGraw-Hill)
[39] Zhao E, Wang J and Wu Z 2010 J. Comput. Chem. 31 2883
[40] Miao N, Sa B, Zhou J and Sun Z 2011 Compd. Mater. Sci. 50 1559
[41] Ozisik H B, Colakoglu K, Deligoz E and Ozisik H 2011 Solid State Commun. 151 1349
[1] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[2] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[3] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[4] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[5] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[6] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[7] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[8] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[9] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[10] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
[11] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[12] tP40 carbon: A novel superhard carbon allotrope
Heng Liu(刘恒), Qing-Yang Fan(樊庆扬)†, Fang Yang(杨放), Xin-Hai Yu(于新海), Wei Zhang(张伟), and Si-Ning Yun(云斯宁)‡. Chin. Phys. B, 2020, 29(10): 106102.
[13] Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), and Su-Huai Wei(魏苏淮)†. Chin. Phys. B, 2020, 29(10): 108401.
[14] Surperhard monoclinic BC6N allotropes: First-principles investigations
Nian-Rui Qu(屈年瑞), Hong-Chao Wang(王洪超), Qing Li(李青), Yi-Ding Li(李一鼎), Zhi-Ping Li(李志平), Hui-Yang Gou(缑慧阳), Fa-Ming Gao(高发明). Chin. Phys. B, 2019, 28(9): 096201.
[15] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
No Suggested Reading articles found!