Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 047201    DOI: 10.1088/1674-1056/21/4/047201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Oxygen vacancy formation and migration in Sr- and Mg-doped LaGaO3: a density functional theory study

Zhang Jie(张洁), Liang Er-Jun(梁二军), Sun Qiang(孙强), and Jia Yu(贾瑜)
School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
Abstract  Oxygen vacancy formation and migration in La0.9Sr0.1Ga0.8Mg0.2O0.3-$\delta$ (LSGM) with various crystal symmetries (cubic, rhombohedral, orthorhombic, and monoclinic) are studied by employing first-principles calculations based on density functional theory (DFT). It is shown that the cubic LSGM has the smallest band gap, oxygen vacancy formation energy, and migration barrier, while the other three structures give rise to much larger values for these quantities, implying the best oxygen ion conductivity of the cubic LSGM among the four crystal structures. In our calculations, one oxygen vacancy migration pathway is considered in the cubic and rhombohedral structures due to all the oxygen sites being equivalent in them, while two vacancy migration pathways with different migration barriers are found in the orthorhombic and monoclinic symmetries owing to the existence of nonequivalent O1 and O2 oxygen sites. The migration energies along the migration pathway linking the two O2 sites are obviously lower than those along the pathway linking the O1 and O2 sites. Considering the phase transitions at high temperatures, the results obtained in this paper can not only explain the experimentally observed different behaviours of the oxygen ionic conductivity of LSGM with different symmetries, but also predict the rational crystal structures of LSGM for solid oxide fuel cell applications.
Keywords:  density functional theory      oxygen vacancy formation energy      oxygen vacancy migration energy      migration pathway  
Received:  28 September 2011      Revised:  17 October 2011      Accepted manuscript online: 
PACS:  72.60.+g (Mixed conductivity and conductivity transitions)  
  71.20.Ps (Other inorganic compounds)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974183).
Corresponding Authors:  Liang Er-Jun,ejliang@zzu.edu.cn     E-mail:  ejliang@zzu.edu.cn

Cite this article: 

Zhang Jie(张洁), Liang Er-Jun(梁二军), Sun Qiang(孙强), and Jia Yu(贾瑜) Oxygen vacancy formation and migration in Sr- and Mg-doped LaGaO3: a density functional theory study 2012 Chin. Phys. B 21 047201

[1] Cook R L and Sammells A F 1991 Solid State Ionics 45 311
[2] Mizusaki J 1992 Solid State Ionics 52 79
[3] Kendall K R, Navas C, Thomas J K and Loye H C 1995 Solid State Ionics 82 215
[4] Ishihara T, Matsuda H and Takita Y 1994 J. Am. Chem. Soc. 116 3801
[5] Ishihara T, Kilner J A, Honda M and Takita Y 1997 J. Am. Chem. Soc. 119 2747
[6] Kim J H and Yoo H I 2001 Solid State Ionics 140 105
[7] Rambabu B, Ghosh S, Zhao W C and Jena H 2006 J. Power Sources 159 21
[8] Zhang J, Liang E J and Zhang X H 2010 J. Power Sources 195 6758
[9] Drennan J, Zelizko V, Hay D, Ciacchi F T, Rajendran S and Badwal S P S 1997 J. Mater. Chem. 7 79
[10] Lerch M, Boysen H and Hansen T 2001 J. Phys. Chem. Solids 62 445
[11] Vasylechko L, Vashook V, Savytskii D, Senyshyn A, Niewa R, Knapp M, Ullmann H, Berkowski M, Matkovskii A and Bismayerg U 2003 J. Solid State Chem. 172 396
[12] Slater P R, Irvine J T S, Ishihara T and Takita Y 1998 J. Solid State Chem. 139 135
[13] Gong W Q, Gopalan S and Pal U B 2006 J. Power Sources 160 305
[14] Fukui T, Ohara S, Murata K, Yoshida H, Miura K and Inagaki T 2002 J. Power Sources 106 142
[15] Yoo J S, Lee S, Yu J H, Woo S K, Park H and Kim H G 2009 J. Power Sources 193 593
[16] Zhai Y L, Ye C, Xiao J Z and Dai L 2006 J. Power Sources 16 316
[17] Feng M and Goodenough J B 1994 Eur. J. Solid State Inorg. Chem. 31 663
[18] Trofimenko N and Ullmann H 1999 Solid State Ionics 118 215
[19] Zhang J, Liang E J, Wang Y F and Jia Y The Journal of Light Scattering 23 357
[20] Akihide K and Isao T 2004 J. Phys. Chem. B 108 9168
[21] Islam M S 2002 Solid State Ionics 154-155 75
[22] Islam M S 2000 J. Mater. Chem. 10 1027
[23] Khan M S, Islam M S and Bates D R 1998 J. Phys. Chem. B 102 3099
[24] Lei X L, Zhu H J, Wang X M and Luo Y H 2008 Chin. Phys. B 17 3687
[25] Chen Q and Cao H H 2004 Chin. Phys. 13 2121
[26] Jones A and Islam M S 2008 J. Phys. Chem. C 112 4455
[27] De Souza R A, Islam M S and Ivers-Tiffée E 1999 J. Mater. Chem. 9 1621
[28] Zhang J H, Ding J W and Lu Z H 2009 Acta Phys. Sin. 58 1901 (in Chinese)
[29] Tang C, Tuttle B and Ramprasad R 2007 Phys. Rev. B 76 073306
[30] Nolan M, Fearon J E and Watson G W 2006 Solid State Ionics 177 3069
[31] Tan X Y, Chen C L and Jin K X 2011 Acta Phys. Sin. 60 107105 (in Chinese)
[32] Yi Y, Ding Z J, Li K, Tang Y J and Luo J S 2011 Acta Phys. Sin. 60 097503 (in Chinese)
[33] Yi Y, Li K, Ding Z J, Yi Z, Luo J S and Tang Y J 2011 Acta Phys. Sin. 60 107502 (in Chinese)
[34] Ji Z H, Zeng X H, Cen J P and Tan M Q 2010 Acta Phys. Sin. 59 1219 (in Chinese)
[35] Delley B 1990 J. Chem. Phys. 92 508
[36] Delley B 1996 J. Phys. Chem. 100 6107
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Bellaiche L and Vanderbilt D 2000 Phys. Rev. B 61 7877
[39] Liu J C, Zhang X M, Chen M A, Tang J G and Liu S D 2010 Acta Phys. Sin. 59 5641 (in Chinese)
[40] Mather G C and Islam M S 2005 Chem. Mater. 17 1736
[41] Günter M M, Boysen H, Corte C, Lerch M and Suard E 2005 Z. Kristallogr. 220 218
[42] Yashima M, Nomura K, Kageyama H, Miyazaki Y, Chitose N and Adachi K 2003 Chem. Phys. Lett. 380 391
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!