Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040502    DOI: 10.1088/1674-1056/21/4/040502
GENERAL Prev   Next  

Novel criteria for exponential synchronization of inner time-varying complex networks with coupling delay

Zhang Qun-Jiao(张群娇)a)† and Zhao Jun-Chan(赵军产)a)b)
a. College of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, China;
b. Laboratoire de Mathématiques Appliquées, Universite du Havre, Le Havre Cedex, 76058, France
Abstract  This paper mainly investigates the exponential synchronization of an inner time-varying complex network with coupling delay. Firstly, the synchronization of complex networks is decoupled into the stability of the corresponding dynamical systems. Based on the Lyapunov function theory, some sufficient conditions to guarantee its stability with any given convergence rate are derived, thus the synchronization of the networks is achieved. Finally, the results are illustrated by a simple time-varying network model with a coupling delay. All involved numerical simulations verify the correctness of the theoretical analysis.
Keywords:  exponential synchronization      time varying      complex network      coupling delay  
Received:  20 May 2011      Revised:  25 December 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  89.75.-k (Complex systems)  
Fund: Project supported in part by the National Natural Science Foundation of China(Grant No.11047114),the Key Project of theChinese Ministry of Education(Grant No.210141),and the Youth Foundation of the Educational Committee of Hubei Provinceof China(Grant Nos.Q20111607 and Q20111611)
Corresponding Authors:  Zhang Qun-Jiao, E-mail:qunjiao99@163.com     E-mail:  qunjiao99@163.com

Cite this article: 

Zhang Qun-Jiao(张群娇) and Zhao Jun-Chan(赵军产) Novel criteria for exponential synchronization of inner time-varying complex networks with coupling delay 2012 Chin. Phys. B 21 040502

[1] Strogatz S H 2001 Nature 410 268
[2] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[3] Wang X F and Chen G R 2003 IEEE Cir. Syst. Mag. 3 6
[4] Wang X F and Chen G R 2002 Int. J. Bifur. Chaos 12 187
[5] Wang X F and Chen G R 2002 IEEE Trans. Circ. Syst. I 49 54
[6] Hong H, Choi M Y and Kim B J 2002 Phys. Rev. E 65 26
[7] Li C G and Chen G R 2004 Physica A 343 263
[8] Li C G, Xu H, Liao X and Yu J 2004 Physica A 335 359
[9] Chen L, Shi Y D and Wang D S 2010 Chin. Phys. B 19 100503
[10] Gao H J, Lam J and Chen G R 2006 Phys. Lett. A 360 263
[11] Tu L L and Lu J A 2009 Comput. Math. Appl. 57 28
[12] Wang Q Y, Duan Z S, Chen G R and Feng Z S 2008 Physica A 387 5616
[13] Zhang W Y and Li J M 2011 Chin. Phys. B 20 030701
[14] He W L and Cao J D 2009 Phys. Lett. A 373 2682
[15] Wu X Q 2008 Physica A 387 997
[16] Earl M G and Strogatz S H 2003 Phys. Rev. E 67 036204
[17] Tu L L 2011 Chin. Phys. B 20 030504
[18] Du R J, Dong G G, Tian L X, Zheng S and Sun M 2010 Chin. Phys. B 19 070509
[19] Li C, Sun W and Xu D 2005 Prog. Theor. Phys. 114 1
[20] Lü J H, Yu X and Chen G R 2004 Physica A 334 281
[21] Boyd S, Ghaoui El, Feron E and Balakrishnan V 1994 “Linear Matrix Inequalities in System and Control Theory”, SIAM Studies in Applied Mathematics (Philadelphia: SIAM)
[22] Abou-Kandil H, Freiling G, Ionescu V and Jank G 2003 Matrix Riccati Equations in Control and Systems Theory (Basel: Birkhauser)
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[7] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[10] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[11] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[14] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[15] Manufacturing enterprise collaboration network: An empirical research and evolutionary model
Ji-Wei Hu(胡辑伟), Song Gao(高松), Jun-Wei Yan(严俊伟), Ping Lou(娄平), Yong Yin(尹勇). Chin. Phys. B, 2020, 29(8): 088901.
No Suggested Reading articles found!