Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040503    DOI: 10.1088/1674-1056/21/4/040503
GENERAL Prev   Next  

Exponential networked synchronization of master-slave chaotic systems with time-varying communication topologies

Yang Dong-Sheng(杨东升)a)†, Liu Zhen-Wei(刘振伟)a), Zhao Yan(赵琰)b), and Liu Zhao-Bing(刘兆冰)a)
a. College of Information Science and Engineering, Northeastern University, Shenyang 110004, China;
b. Department of Automatic Control Engineering, Shenyang Institute of Engineering, Shenyang 110136, China
Abstract  The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time-varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method.
Keywords:  exponential networked synchronization      master-slave chaotic systems      algebraic graph theory      communication topology  
Received:  11 August 2011      Revised:  19 October 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.60904046,60972164,60974071,and60804006),the Special Fund for Basic Scientific Research of Central Colleges,Northeastern University,China(GrantNo.090604005),the Science and Technology Program of Shenyang(Grant No.F11-264-1-70),the Program for Liaoning Ex-cellent Talents in University(Grant No.LJQ2011137),and the Program for Liaoning Innovative Research Team in University(Grant No.LT2011019)
Corresponding Authors:  Yang Dong-Sheng, E-mail:yangdongsheng@mail.neu.edu.cn     E-mail:  yangdongsheng@mail.neu.edu.cn

Cite this article: 

Yang Dong-Sheng(杨东升), Liu Zhen-Wei(刘振伟), Zhao Yan(赵琰), and Liu Zhao-Bing(刘兆冰) Exponential networked synchronization of master-slave chaotic systems with time-varying communication topologies 2012 Chin. Phys. B 21 040503

[1] Murray R M (ed.) 2003 Control in an Information Rich World: Report of the Panel on Future Directions in Control, Dynamics and Systems (Philadelphia: Society for Industrial and Applied Mathermatics) p. 1
[2] Saber R O and Murray R M 2004 IEEE Trans. Autom. Control 49 1520
[3] Chen F, Chen Z Q, Xiang L Y, Liu Z X and Yuan Z Z 2009 Automatica 45 1215
[4] Scardovi L and Sepulchre R 2009 Automatica 45 2257
[5] Ni W and Cheng D Z 2010 Systems & Control Letters 59 209
[6] Jadbabaie A, Lin J and Morse S 2003 IEEE Trans. Autom. Control 48 988
[7] Moreau L 2005 IEEE Trans. Autom. Control 50 169
[8] Stan G B and Sepulchre R 2007 IEEE Trans. Autom. Control 52 256
[9] Hong Y G, Hu J P and Gao L X 2006 Automatica 42 1177
[10] Hong Y G, Gao L X, Cheng D Z and Hu J P 2007 IEEE Trans. Autom. Control 52 943
[11] Ren W and Beard R W 2005 IEEE Trans. Autom. Control 50 655
[12] Liu Y and Passino K M 2006 IEEE Trans. Autom. Control 51 1734
[13] Chopra N and Spong M W 2009 IEEE Trans. Autom. Control 54 353
[14] Hale J K 1996 Journal of Dynamics and Differential Equations 9 1
[15] Pogromsky A 1998 Int. J. Bifur. Chaos 2 295
[16] Wang Y C, Zhang H G, Wang X Y and Yang D S 2010 IEEE Trans. Sys. Man. Cybern. B: em Cybern. 40 1468
[17] Zhang H G, Ma T D, Huang G B and Wang Z L 2010 IEEE Trans. Sys. Man. Cybern. B: Cybernetics 40 831
[18] Kocarev L and Parlitz U 1995 Phys. Rev. Lett. 74 5028
[19] Zhang H G, Xie Y H, Wang Z L and Zheng C D 2007 IEEE Trans. Neural Networks 18 1841
[20] Zhang H G, Huang W, Wang Z L and Chai T Y 2006 Phys. Lett. A 350 363
[21] Ma T D, Zhang H G and Fu J 2008 Chin. Phys. B 17 4407
[22] Zhang H G, Ma T D, Yu W and Fu J 2008 Chin. Phys. B 17 3616
[23] Wang Z S, Zhang H G and Wang Z L 2006 Acta Phys. Sin. 55 2687 (in Chinese)
[24] Ma T D and Fu J 2011 Chin. Phys. B 20 050511
[25] Zhang H G, Guan H X and Wang Z S 2007 Progress in Natural Science 17 687
[26] Wang X Y, Xu M and Zhang H G 2009 Int. J. Mod. Phys. B 23 5163
[27] Zhang H G, Ma T D, Yu W and Fu J 2008 Chin. Phys. B 17 3616
[28] Ma T D, Fu J and Sun Y 2010 Chin. Phys. B 19 090502
[29] Zhang H G, Fu J, Ma T D and Tong S C 2009 Chin. Phys. B 18 3325
[30] Zhang H G, Ma T D, Fu J and Tong S C 2009 Chin. Phys. B 18 3751
[31] Godsil C and Royle G 2001 Algebraic Graph Theory (New York: Springer-Verlag) p. 207
[32] Horn R A and Johnson C R 1985 Matrix Analysis (New York: Cambridge University Press)
[33] Lorenz E N 1963 J. Atmos. Sci. 20 130
[34] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[35] Lü J and Chen G 2002 J. Atmos. Sci. 12 659
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[7] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[10] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[11] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[12] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[13] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[14] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[15] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
No Suggested Reading articles found!