|
|
A scaling law of high-order harmonic generation |
Wu Yan(吴艳)a), Ye Hui-Liang(叶会亮)a), Shao Chu-Yin(邵初寅)b), and Zhang Jing-Tao(张敬涛)a)† |
a. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
b. Changshu Institute of Technology, Changshu 215500, China |
|
|
Abstract Using a nonperturbative quantum electrodynamics theory of high-order harmonic generation (HHG), a scaling law of HHG is established. The scaling law states that when the atomic binding energy Eb, the wavelength $\lambda$ and the intensity I of the laser field change simultaneously to kEb, $\lambda$/k, and k3I, respectively. The characteristics of the HHG spectrum remain unchanged, while the harmonic yield is enhanced k3 times. That HHG obeys the same scaling law with above-threshold ionization is a solid proof of the fact that the two physical processes have similar physical mechanisms. The variation of integrated harmonic yields is also discussed.
|
Received: 28 June 2011
Revised: 29 August 2011
Accepted manuscript online:
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774153 and 61078080) and the National Basic Research Program of China (Grant Nos. 2010CB923203 and 2011CB808103). |
Corresponding Authors:
Zhang Jing-Tao,jtzhang@siom.ac.cn
E-mail: jtzhang@siom.ac.cn
|
Cite this article:
Wu Yan(吴艳), Ye Hui-Liang(叶会亮), Shao Chu-Yin(邵初寅), and Zhang Jing-Tao(张敬涛) A scaling law of high-order harmonic generation 2012 Chin. Phys. B 21 024210
|
[1] |
Guo D S, Zhang J T, Xu Z Z, Li X F, Fu P M and Freeman R R 2003 Phys. Rev. A 68 043404
|
[2] |
Larsson J, Mével E, Zerne R, L'Huillier A, Wahlström C G and Svanberg S 1995 J. Phys. B 28 L53
|
[3] |
Kim D S, Park J J, Lee K H, Park J and Nam C H 2009 Jpn. J. Appl. Phys. 48 026506
|
[4] |
Teubner U and Gibbon P 2009 Rev. Mod. Phys. 81 445
|
[5] |
Ganeev R A 2007 J. Phys. B 40 213(R)
|
[6] |
Wu J, Zhai Z and Liu X S 2010 Chin. Phys. B 19 093201
|
[7] |
Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P and Ivanov M Y 2009 Nature 460 972
|
[8] |
Baker S, Robinson J S, Lein M, Chirilva C C, Torres R, Bandulet H C, Comtois D, Kieffer J C, Villeneuve D M, Tisch J W G and Marangos J P 2008 Phys. Rev. Lett. 101 053901
|
[9] |
Lin Z Z, Zhuang J and Ning X J 2010 Chin. Phys. B 19 113204
|
[10] |
Zhang C L, Qi Y Y, Liu X S and Ding P Z 2009 Acta Phys. Sin. 58 3078 (in Chinese)
|
[11] |
Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P and DiMauro L F 2009 it Nat. Phys. 5 335
|
[12] |
Catoire F, Blaga C I, Sistrunk E, Muller H G, Agostini P and DiMauro L F 2009 Laser Phys. 19 1574
|
[13] |
Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y and Xu Z Z 2009 Phys. Rev. Lett. 103 093001
|
[14] |
Liu C, Nakajima T, Sakka T and Ohgaki H 2008 Phys. Rev. A 77 043411
|
[15] |
Doumy G, Wheeler J, Roedig C, Chirla R, Agostini P and DiMauro L F 2009 Phys. Rev. Lett. 102 093002
|
[16] |
Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Leare F, Gigue M, Kieffer J C, Corkum P B and Villeneuve D M 2009 Phys. Rev. Lett. 103 073902
|
[17] |
Gibson E A, Paul A, Wagner N, Tobey R, Gaudiosi D, Backus S, Christov I P, Aquila A, Gullikson E M, Attwood D T, Murnane M M and Kapteyn H C 2003 Science 302 95
|
[18] |
Yakovlev V S, Ivanov M and Krausz F 2007 Opt. Express 15 15351
|
[19] |
Tate J, Auguste T, Muller H G, Salieres P, Agostini P and DiMauro L F 2007 Phys. Rev. Lett. 98 013901
|
[20] |
Pérez-Hernández J A, Ramos J, Roso L and Plaja L 2010 Laser Phys. 20 1044
|
[21] |
Frolov M V, Manakov N L and Starace A F 2008 Phys. Rev. Lett. 100 173001
|
[22] |
Chen J, Zeng B, Liu X, Cheng Y and Xu Z 2009 New J. Phys. 11 113021
|
[23] |
Gao L H, Li X F, Guo D S and Fu P M 1999 Chin. Phys. Lett. 16 502
|
[24] |
Gao L H, Li X F, Fu P M, Freeman R R and Guo D S 2000 Phys. Rev. A 61 063407
|
[25] |
Guo D S, Aberg T and Crasemann B 1989 Phys. Rev. A 40 4997
|
[26] |
Wang Y, Zhang J T, Ren X H and Xu Z Z 2009 Chin. Phys. B 18 4815
|
[27] |
Shan B and Chang Z 2001 Phys. Rev. A 65 011804(R)
|
[28] |
Itatani J, Levesque J, Zeidler D, Niikura H, P閜in H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867
|
[29] |
Fu P M, Wang B B, Li X F and Gao L H 2001 Phys. Rev. A 64 063401
|
[30] |
Zhang X M, Zhang J T, Bai L H, Gong Q H and Xu Z Z 2005 Opt. Express 13 8708
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|