Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020306    DOI: 10.1088/1674-1056/21/2/020306
GENERAL Prev   Next  

Dynamic stability and manipulation of bright matter-wave solitons by optical lattices in Bose–Einstein condensates

Song Chang-Sheng(宋昌盛), Li Jing(黎菁) , and Zong Feng-De(宗丰德)
Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  An extended variation approach to describing the dynamic evolution of self-attractive Bose-Einstein condensates is developed. We consider bright matter-wave solitons in the presence of a parabolic magnetic potential and a time-space periodic optical lattice. The dynamics of condensates is shown to be well approximated by four coupled nonlinear differential equations. A noteworthy feature is that the extended variation approach gives a critical strength ratio to support multiple stable lattice sites for the condensate. We further examine the existence of the solitons and their stabilities at the multiple stable lattice sites. In this case, the analytical predictions of Bose-Einstein condensates variational dynamics are found to be in good agreement with numerical simulations. We then find a stable region for successful manipulating matter-wave solitons without collapse, which are dragged from an initial stationary to a prescribed position by a moving periodic optical lattice.
Keywords:  Bose-Einstein condensates      Gross-Pitaevskii equation      matter-wave solitons      controlled manipulation  
Received:  09 June 2011      Revised:  10 August 2011      Accepted manuscript online: 
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10672147 and 11072219), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y605312 and Y1080959), and the Foundation of Department of Education of Zhejiang Province, China (Grant No. 20030704).
Corresponding Authors:  Zong Feng-De,fdzong@zjnu.cn     E-mail:  fdzong@zjnu.cn

Cite this article: 

Song Chang-Sheng(宋昌盛), Li Jing(黎菁), and Zong Feng-De(宗丰德) Dynamic stability and manipulation of bright matter-wave solitons by optical lattices in Bose–Einstein condensates 2012 Chin. Phys. B 21 020306

[1] Anderson M H, Matthews J R and Wieman C E 1995 emphScience 269 198
[2] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 emphRev. Mod. Phys. 71 463
[3] Anderson B P and Kasevich M A 1998 emphScience 282 1686
[4] Ovchinnikov Y B, Muller J H, Doery M R, Vredenbregt E J, Helmerson K, Rolston S L and Phillips W D 1999 emphPhys. Rev. Lett. 83 284
[5] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 emphPhys. Rev. Lett. 81 3108
[6] Choi D I and Niu Q 1999 emphPhys. Rev. Lett. 82 2022
[7] Carr L D and Brand J 2004 emphPhys. Rev. A 70 033607
[8] Cornish S L, Claussen N R, Roberts J L, Cornell E A and Wieman C E 2000 emphPhys. Rev. Lett. 85 1795
[9] Qian C, Wang L L and Zhang J F 2011 emphActa Phys. Sin. 60 064214 (in Chinese)
[10] Burlak G and Malomed B A 2008 emphPhys. Rev. A 77 053606
[11] Brazhnyi V A and Konotop V V 2005 emphPhys. Rev. A 72 033615
[12] Kevrekidis P G, Theocharis G, Frantzeskakis D J and Malomed B A 2003 emphPhys. Rev. Lett. 90 230401
[13] Jona-Lasinio M, Morsch O, Cristiani M, Malossi N, M黮ler J H, Courtade E, Anderlini M and Arimondo E 2003 emphPhys. Rev. Lett. 91 230406
[14] Caul C, Lima R P A, Diaz E, M黮ler C A and Dom'hinguez-Adame F 2009 emphPhys. Rev. Lett. 102 255303
[15] Greiner M, Mandel O, Esslinger T, Hflnsch T W and Bloch I 2002 emphNature (London) 415 39
[16] Herring G, Kevrekidis P G, Carretero-Gonz醠ez R, Malomed B A, Frantzeskakis D J and Bishop A R 2005 emphPhys. Lett. A 345 144
[17] Carretero-Gonz醠ez R, Frantzeskakis D J and Kevrekidis P G 2008 emphNonlinearity 21 R139
[18] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 emphNature (London) 417 150
[19] Pitaevskii L P 1961 emphSov. Phys. JETP 13 451
[20] P閞ez-Garc'hia V M, Michinel H and Herrero H 1998 emphPhys. Rev. A 57 3837
[21] Morsch O and Oberthaler M 2006 emphRev. Mod. Phys. 78 179
[22] Brazhnyi V A and Konotop V V 2004 emphMod. Phys. Lett. B 18 627
[23] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 emphScience 296 1290
[24] Ablowitz M and Segur H 1981 emphSolitons and the Inverse Scattering Transforms (Philadelphia: SIAM)
[25] Elgin J N 1993 emphPhys. Rev. A 47 4331
[26] Whitham G 1974 emphLinear and Nonlinear Waves (New York: Wiley-Interscience)
[27] Desaix M, Anderson D and Lisak M 1991 emphJ. Opt. Soc. Am. B 8 2082
[28] P閞ez-Garc'hia V M, Michinel H, Cirac J I, Lewenstein M and Zoller P 1997 emphPhys. Rev. A 56 1424
[29] Anderson D 1983 emphPhys. Rev. A 27 3135
[30] Malomed B A 2002 emphProg. Opt. 43 69
[31] Brand J and Kolovsky A R 2006 emphEur. Phys. J. D 10 1140
[32] Trombettoni A and Smerzi A 2001 emphPhys. Rev. Lett. 86 2353
[33] Drazin P G 1992 emphNonlinear Systems (Cambridge: Cambridge University)
[34] Zong F D, Yang Y and Zhang J F 2009 emphActa Phys. Sin. 58 3670 (in Chinese)
[35] Matuszewsiki M, Malomed B A and Trippenbach M 2007 emphPhys. Rev. A 75 063621
[36] Kevrekids P G, Frantzeskakis D J, Carretero-Gonz醠ez R, Malomed B A, Herring G and Bishop A R 2005 emphPhys. Rev. A 71 023614
[37] Nistazakis H E, Kevrekidis P G, Malomed B A, Frantzeskakis D J and Bishop A R 2002 emphPhys. Rev. E 66 015601
[38] Theocharis G, Frantzeskakis D J, Carretero-Gonz醠ez R, Kevrekidis P G and Malomed B A 2005 emphPhys. Rev. E 71 017602
[1] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[2] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[3] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[4] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[5] Bose-Einstein condensates under a non-Hermitian spin-orbit coupling
Hao-Wei Li(李浩伟) and Jia-Zheng Sun(孙佳政). Chin. Phys. B, 2021, 30(6): 066702.
[6] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[7] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[8] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[9] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[10] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[11] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[12] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[13] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹)† and Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[14] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[15] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
No Suggested Reading articles found!