Abstract We have applied Maxwell's equations to study the physics of quantum Hall's effect. The electromagnetic properties of this system are obtained. The Hall's voltage, VH=2πh2ns/em, where ns is the electron number density, for a 2-dimensional system, and h=2πh is the Planck's constant, is found to coincide with the voltage drop across the quantum capacitor. Consideration of the cyclotronic motion of electrons is found to give rise to Hall's resistance. Ohmic resistances in the horizontal and vertical directions have been found to exist before equilibrium state is reached. At a fundamental level, the Hall's effect is found to be equivalent to a resonant LCR circuit with LH=2πm/e2ns and CH=me2/2πh2ns satisfying resonance condition with resonant frequency equals to the inverse of the scattering (relaxation) time, τs. The Hall's resistance is found to be RH=√LH/CH. The Hall's resistance may be connected with the impedance that the electron wave experiences when propagates in the 2-dimensional gas.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.