Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 127301    DOI: 10.1088/1674-1056/21/12/127301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The quantum Hall's effect: A quantum electrodynamic phenomenon

A. I. Arbab
Department of Physics, Faculty of Science, University of Khartoum, P. O. Box 321, Khartoum 11115, Sudan
Abstract  We have applied Maxwell's equations to study the physics of quantum Hall's effect. The electromagnetic properties of this system are obtained. The Hall's voltage, VH=2πh2ns/em, where ns is the electron number density, for a 2-dimensional system, and h=2πh is the Planck's constant, is found to coincide with the voltage drop across the quantum capacitor. Consideration of the cyclotronic motion of electrons is found to give rise to Hall's resistance. Ohmic resistances in the horizontal and vertical directions have been found to exist before equilibrium state is reached. At a fundamental level, the Hall's effect is found to be equivalent to a resonant LCR circuit with LH=2πm/e2ns and CH=me2/2πh2ns satisfying resonance condition with resonant frequency equals to the inverse of the scattering (relaxation) time, τs. The Hall's resistance is found to be RH=√LH/CH. The Hall's resistance may be connected with the impedance that the electron wave experiences when propagates in the 2-dimensional gas.
Keywords:  quantum Hall effect      Maxwell equations      electromagnetism  
Received:  23 May 2012      Revised:  28 June 2012      Accepted manuscript online: 
PACS:  73.40.Hm-  
  72.20.My (Galvanomagnetic and other magnetotransport effects)  
  41.20.-q (Applied classical electromagnetism)  
Corresponding Authors:  A. I. Arbab     E-mail:  aiarbab@uofk.edu

Cite this article: 

A. I. Arbab The quantum Hall's effect: A quantum electrodynamic phenomenon 2012 Chin. Phys. B 21 127301

[1] Hall E 1879 Am. J. Math. 11 287
[2] von Klitzing, K, Dorda, G and Pepper M 1980 Phys. Rev. Lett. 45 494
[3] Laughlin R B 1983 Phys. Rev. Lett. 50 1395
[4] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[5] Arbab A I 2012 Europhys. Lett. 98 30008
[6] Arbab A I http://arxiv.org/abs/1203.0613
[7] Cage M E and Jeffery A 1996 J. Res. Natl. Inst. Stand. Technol. 101 733
[8] Arbab A I 2012 Chin. Phys. Lett. 00 submitted
[9] London F 1948 Phys. Rev. 74 562
[10] Ashcroft N W and Mermin N D 1976 Solid State Physics (Harcourt College Pubs.) 1976
[11] Luryi S 1988 Appl. Phys. Lett. 52 501
[12] Bjorken J D and Drell S D 1964 Relativistic Quantum Mechanics (McGraw-Hill)
[13] Casimir H B G 1948 Proc. K. Ned. Akad. Wet. 51 793
[14] Devoret M H 1997 Quantum Fluctuations (Amsterdam: Elsevier Science B. V.)
[15] Novoselov K S et al. 2005 Nature 438 197
[16] Dirac P A M 1931 Proc. Roy. Soc. London. A 133 60
[17] Dirac P A M 1948 Phys. Rev. 74 817
[18] von Klitzing K 2004 Séminaire Poincaré 2 1
[1] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[2] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[3] Integer quantum Hall effect in Kekulé-patterned graphene
Yawar Mohammadi and Samira Bahrami. Chin. Phys. B, 2022, 31(1): 017305.
[4] Magnetotransport properties of graphene layers decorated with colloid quantum dots
Ri-Jia Zhu(朱日佳), Yu-Qing Huang(黄雨青), Jia-Yu Li(李佳玉), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(6): 067201.
[5] Entangled multi-knot lattice model of anyon current
Tieyan Si(司铁岩). Chin. Phys. B, 2019, 28(4): 040501.
[6] Coulomb-dominated oscillations in a graphene quantum Hall Fabry-Pérot interferometer
Guan-Qun Zhang(张冠群), Li Lin(林立), Hailin Peng(彭海琳), Zhongfan Liu(刘忠范), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(12): 127203.
[7] Sub-millikelvin station at Synergetic Extreme Condition User Facility
Zhi Gang Cheng(程智刚), Jie Fan(樊洁), Xiunian Jing(景秀年), Li Lu(吕力). Chin. Phys. B, 2018, 27(7): 070702.
[8] Two-dimensional transport and strong spin-orbit interaction in SrMnSb2
Jiwei Ling(凌霁玮), Yanwen Liu(刘彦闻), Zhao Jin(金昭), Sha Huang(黄沙), Weiyi Wang(王伟懿), Cheng Zhang(张成), Xiang Yuan(袁翔), Shanshan Liu(刘姗姗), Enze Zhang(张恩泽), Ce Huang(黄策), Raman Sankar, Fang-Cheng Chou, Zhengcai Xia(夏正才), Faxian Xiu(修发贤). Chin. Phys. B, 2018, 27(1): 017504.
[9] The propagation of shape changing soliton in a nonuniform nonlocal media
L. Kavitha, C. Lavanya, S. Dhamayanthi, N. Akila, D. Gopi. Chin. Phys. B, 2013, 22(8): 084209.
[10] From magnetically doped topological insulator to the quantum anomalous Hall effect
He Ke (何珂), Ma Xu-Cun (马旭村), Chen Xi (陈曦), Lü Li (吕力), Wang Ya-Yu (王亚愚), Xue Qi-Kun (薛其坤). Chin. Phys. B, 2013, 22(6): 067305.
[11] Propagation of electromagnetic soliton in anisotropic biquadratic ferromagnetic medium
L. Kavitha, M. Saravanan, D. Gopi. Chin. Phys. B, 2013, 22(3): 030512.
[12] Graphene-like physics in optical lattices
Mei Feng (梅锋), Zhang Dan-Wei (张丹伟), Zhu Shi-Liang (朱诗亮). Chin. Phys. B, 2013, 22(11): 116106.
[13] New exact solutions of Einstein–Maxwell equations for magnetostatic fields
Nisha Goyal, R. K. Gupta. Chin. Phys. B, 2012, 21(9): 090401.
[14] The topological structure of the integral quantum Hall effect in magnetic semiconductor-superconductor hybrids
Ren Ji-Rong(任继荣) and Zhu Hui(朱辉). Chin. Phys. B, 2009, 18(6): 2535-2541.
[15] A possible mechanism of current in medium under electromagnetic wave
Zhang Tao(张涛). Chin. Phys. B, 2006, 15(8): 1752-1754.
No Suggested Reading articles found!