Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054101    DOI: 10.1088/1674-1056/26/5/054101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra-wideband RCS reduction using novel configured chessboard metasurface

Ya-Qiang Zhuang(庄亚强), Guang-Ming Wang(王光明), He-Xiu Xu(许河秀)
Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
Abstract  A novel artificial magnetic conductor (AMC) metasurface is proposed with ultra-wideband 180° phase difference for radar cross section (RCS) reduction. It is composed of two dual-resonant AMC cells, which enable a broadband phase difference of 180°±30° from 7.9 GHz to 19.2 GHz to be achieved. A novel strategy is devised by dividing each rectangular grid in a chessboard configuration into four triangular grids, leading to a further reduction of peak bistatic RCS. Both full-wave simulation and measurement results show that the proposed metasurface presents a good RCS reduction property over an ultra-wideband frequency range.
Keywords:  radar cross section reduction      artificial magnetic conductor      ultra-wideband      metasurface  
Received:  21 September 2016      Revised:  17 November 2016      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372034 and 61501499).
Corresponding Authors:  Guang-Ming Wang     E-mail:  wgming01@sina.com

Cite this article: 

Ya-Qiang Zhuang(庄亚强), Guang-Ming Wang(王光明), He-Xiu Xu(许河秀) Ultra-wideband RCS reduction using novel configured chessboard metasurface 2017 Chin. Phys. B 26 054101

[1] Fante R L and McCormack M T 1988 IEEE Trans. Antennas Propag. 36 1443
[2] Costa F, Monorchio A and Manara G 2010 IEEE Trans. Antennas Propag. 58 1551
[3] Xu H X, Wang G M, Qi M Q, Liang J G, Gong J Q and Xu Z M 2012 Phys. Rev. B 86 205104
[4] Shen X P, Yang Y, Zang Y Z, Gu J, Han J G, Zhang W L and Cui T J 2012 Appl. Phys. Lett. 101 154102
[5] Wang K, Zhao J, Cheng Q, Dong D S and Cui T J 2014 Sci. Rep. 4 5935
[6] Yan X, Liang L J, Yang J, Liu W W, Ding X, Xu D G, Zhang Y T, Cui T J and Yao J Q 2015 Opt. Express 23 29128
[7] Xie S Y, Huang J J, Liu L G and Yuan N C 2014 Chin. Phys. B 23 047802
[8] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z and Zhang A X 2014 Appl. Phys. Lett. 104 221110
[9] Wu C J, Cheng Y Z, Wang W Y, He B and Gong R Z 2015 Acta Phys. Sin. 64 164102 (in Chinese)
[10] Paquay M, Iriate J C, Ederra I, Gonzalo R and Maagt P D 2007 IEEE Trans. Antennas Propag. 55 3630
[11] Edalati A and Sarabandi K 2014 IEEE Trans. Antennas Propag. 62 747
[12] Chen W G, Balanis C A and Birtcher C R 2015 IEEE Trans. Antennas Propag. 63 2636
[13] Zheng Y J, Gao J, Cao X Y, Li S J, Yang H H, Li W Q, Zhao Y and Liu H X 2015 Acta Phys. Sin. 64 024219 (in Chinese)
[14] Pan W B, Huang C, Pu M B, Ma X L, Cui J H, Zhao B and Luo X G 2016 Sci. Rep. 6 21462
[15] Sievenpiper D, Zhang L J, Broas R F J, Alexópolous N G and Yablonovitch E 1999 IEEE Trans. Microw. Theory Tech. 47 2059
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[8] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[14] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[15] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
No Suggested Reading articles found!