Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 125202    DOI: 10.1088/1674-1056/21/12/125202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Electron temperature diagnostics of aluminium plasma in z-pinch experiment on “QiangGuang-1” facility

Li Mo (李沫), Wu Jian (吴坚), Wang Liang-Ping (王亮平), Wu Gang (吴刚), Han Juan-Juan (韩娟娟), Guo Ning (郭宁), Qiu Meng-Tong (邱孟通)
Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  Two curved crystal spectrometers are setup on "QiangGuang-1" generator to measure the z-pinch plasma spectra emitted from planar aluminum wire array loads. The Kodak Biomax-MS film and IRD AXUVHS5# array are employed to record time-integrated and time-resolved free-bound radiation respectively. The photon energy recorded by each detector is ascertained by using the L-shell lines of molybdenum plasma. Based on the exponential relation between the continuum power and photon energies, the aluminum plasma electron temperatures are measured. For the time-integrated diagnosis, several "bright spots" indicate electron temperatures between (450 eV~520 eV)± 35%. And for the time-resolved ones, the result shows that the electron temperature reaches about 800 eV±30% at peak power. The system satisfies the demand of z-pinch plasma electron temperature diagnosis on ~1 MA facility.
Keywords:  electron temperature      continuum      curved crystal spectrometer      z-pinch  
Received:  02 May 2012      Revised:  30 May 2012      Accepted manuscript online: 
PACS:  52.70.La (X-ray and γ-ray measurements)  
  32.30.Rj (X-ray spectra)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10905047).
Corresponding Authors:  Li Mo     E-mail:  lemon7665@sina.com

Cite this article: 

Li Mo (李沫), Wu Jian (吴坚), Wang Liang-Ping (王亮平), Wu Gang (吴刚), Han Juan-Juan (韩娟娟), Guo Ning (郭宁), Qiu Meng-Tong (邱孟通) Electron temperature diagnostics of aluminium plasma in z-pinch experiment on “QiangGuang-1” facility 2012 Chin. Phys. B 21 125202

[1] Xiao D L, Ning C, Lan K and Ding N 2010 Acta Phys. Sin. 59 430 (in Chinese)
[2] Li J, Xie W P, Huang X B, Yang L B, Cai H C and Pu Y K 2010 Acta Phys. Sin. 59 7922 (in Chinese)
[3] Sanford T W L, Nash T J, Mock R C, Spielman R B, Struve K W, Hammer J H, DeGroot J S, Whitney K G and Apruzese J P 1997 Phys. Plasmas 4 2188
[4] Ryutov D D, Derzon M S and Matzen M K 2000 Rev. Mod. Phys. 72 167
[5] Hutchinson I H 2002 Principles of Plasma Diagnostics (Cambridge: Cambridge University Press) p. 201
[6] Fujimoto T 2004 Plasma Spectroscopy (Oxford: Clarendon Press) p. 205
[7] Gross B, Grycz B and Miklóssy K 1980 Plasma Technology (Beijing: Science Press) p. 136 (in Chinese)
[8] Sanford T W L, Nash T J, Mock R C, Spielman R B, Seamen J F, McGurn J S, Whitney K G, Thornhill J W, Pulsifer P E and Apruzese J P 1997 Rev. Sci. Instrum. 68 852
[9] Zeng Z Z, Qiu M T, Cong P T, Wang L P, Kuai B, Sheng L, Wu G, Guo N, Li H and Qiu A C 2008 Proc.17th Int. Conf. High Power Particle Beams (Xi'an: Conf. High Power Particle Beams) p. 14
[10] Wu G, Qiu A C, Lü M, Hei D W, Sheng L, Wei F L, Kuai B, Wang L P, Cong P T, Lei T S, Han J J and Sun T P 2009 High Power Laser Particle Beams 21 1115
[11] Hall G N, Pikuz S A, Shelkovenko T A, Bland S N, Lebedev S V, Ampleford D J, Palmer J B A, Bott S C, Rapley J and Chittenden J P 2006 Phys. Plasmas 13 082701
[12] Gan X S, Yang J M, Yi R Q, Zhang J Y, Zhao Y D, Zhao Y, Cui M Q and Deng A H 2007 High Power Laser and Particle Beams 19 1827
[13] Yang J M, Gan X S, Zhao Y, Cui M Q, Zhu T, Zhao Y D, Sun L J, Zheng L, Yan F, Hu Z M, Wei M X, Zhang J Y and Yi R Q 2011 Chin. Phys. B 20 010705
[14] Henke B L, Gullikson E M and Davis J C 1993 At. Data Nucl. Data Tables 54 181
[15] Marshall F J, Knauer J P, Anderson D and Schmitt B L 2006 Rev. Sci. Instrum. 77 10F308
[16] Knauer J P, Marshall F J, Yaakobi B, Anderson D, Schmitt B A, Chandler K M, Pikuz S A, Shelkovenko T A, Mitchell M D and Hammer D A 2006 Rev. Sci. Instrum 77 10F331
[17] Scholze F, Rabus H and Ulm G 1996 Proceedings of the SPIE (Denver: Proc. SPIE) 2808 534
[18] Idzorek G C and Bartlett R J 1997 Proceedings of the SPIE (San Diego: Proc. SPIE) 3114 349
[19] Apruzese J P, Whitney K G, Davis J and Kepple P C 1997 J. Quantum Spectrosc. Radiat. Transfer 57 41
[1] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[2] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[3] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[4] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[5] Micro-pinch formation and extreme ultraviolet emission of laser-induced discharge plasma
Jun-Wu Wang(王均武), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗), and Vassily S. Zakharov. Chin. Phys. B, 2021, 30(9): 095207.
[6] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[7] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[8] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[9] A numerical study of dynamics in thin hopper flow and granular jet
Meng-Ke Wang(王梦柯), Guang-Hui Yang(杨光辉), Sheng Zhang(张晟), Han-Jie Cai(蔡汉杰), Ping Lin(林平), Liang-Wen Chen(陈良文), Lei Yang(杨磊). Chin. Phys. B, 2020, 29(4): 048102.
[10] Bound in continuum states and induced transparency in mesoscopic demultiplexer with two outputs
Z Labdouti, T Mrabti, A Mouadili, E H El Boudouti, F Fethi, and B Djafari-Rouhani. Chin. Phys. B, 2020, 29(12): 127301.
[11] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[12] Orientation-dependent depolarization of supercontinuum in BaF2 crystal
Zi-Xi Li(李子熙), Cheng Gong(龚成), Tian-Jiao Shao(邵天骄), Lin-Qiang Hua(华林强), Xue-Bin Bian(卞学滨), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2020, 29(1): 014212.
[13] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[14] Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton
Song-Tao Fan(樊松涛), Yan-Yan Zhang(张颜艳), Lu-Lu Yan(闫露露), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2019, 28(6): 064204.
[15] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
No Suggested Reading articles found!