Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 124701    DOI: 10.1088/1674-1056/21/12/124701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Parameter design of a liquid-filled sloshing system

Zhong Shun (钟顺)a c, Chen Yu-Shu (陈予恕)b c
a School of Civil Engineering, Tianjin University, Tianjin 300072, China;
b School of Mechanical Engineering, Tianjin University, Tianjin 300072, China;
c Tianjin Key Labortory of Nonlinear Dynamics and Chaos Control, Tianjin 300072, China
Abstract  The nonlinear governing equations of the liquid sloshing modals in cylindrical storage tank are established. Through analytical analysis, the analytical expressions of the solutions of this kind of system are obtained. With different parameters, the dynamical behaviours of the solutions are different from the trivial ones. To prevent system instability, two selection principles that the stiffness equations are positive-definite and the nonlinear terms of the system are not regenerative elements are given. Meanwhile, numerical simulations are also given, which confirm the analytical results.
Keywords:  liquid-filled system      analytical analysis      selection principle      instability  
Received:  17 April 2012      Revised:  13 May 2012      Accepted manuscript online: 
PACS:  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
  02.30.Hq (Ordinary differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10632040) and the Independent Innovation Foundation of Tianjin University.
Corresponding Authors:  Zhong Shun     E-mail:  ily_00000@163.com

Cite this article: 

Zhong Shun (钟顺), Chen Yu-Shu (陈予恕) Parameter design of a liquid-filled sloshing system 2012 Chin. Phys. B 21 124701

[1] Abramson H N 2003 Appl. Mech. Rev. 56 1
[2] Ibrahim R A and Pilipchuk V N 2001 Appl. Mech. Rev. 54 133
[3] Liu Y L, Zhu J and Luo X S 2009 Chin. Phys. B 18 3772
[4] Zhou L Q, Chen Y S and Chen F Q 2009 Acta Astronaut. 65 1628
[5] Askari E and Daneshmand F 2009 J. Fluid. Struct. 25 389
[6] Peng H W, Yuan H J, Wang D J, Chen S Z and Lee C B 2006 J. Hydrodynamic 18 507
[7] Pan X H and Jin W Q 2005 Chin. Phys. 14 422
[8] Yin L Z, Ma X R, Wang B L and Zou J X 2001 J. Vib. Eng. 14 68 (in Chinese)
[9] Ma X R, Wang B L and Gou X Y 2001 Spacecraft Dynamics: Progress and Application Issues (Beijing: Science Press) p. 329 (in Chinese)
[10] Wang G Y and He H L 2008 Chin. Phys. B 17 4014
[11] Li X T and Yin M H 2012 Chin. Phys. B 21 050507
[12] Zhong S and Chen Y S 2011 Appl. Math. Mech. Engl. 32 1169
[13] Nayfeh A H 1979 Nonlinear Oscillations (Weinheim: A Wiley-Interscience Publication) pp. 39-63, 392
[14] Chen Y S and Audrew Y T L 1998 Bifurcation and Chaos in Engineering (London: Springe-Vereag) p. 66
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[4] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[5] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[6] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[7] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[8] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[9] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[10] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[11] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[12] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[13] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[14] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[15] Analytical model for Rayleigh—Taylor instability in conical target conduction region
Zhong-Yuan Zhu(朱仲源), Yun-Xing Liu(刘云星), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(10): 105202.
No Suggested Reading articles found!