Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 124206    DOI: 10.1088/1674-1056/21/12/124206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Polarization properties in prism laser gyro with mechanical dither bias

Yao Cheng-Kang (姚呈康), Zeng Xiao-Dong (曾晓东), Cao Chang-Qing (曹长庆)
School of Technical Physics, Xidian University, Xi'an 710071, China
Abstract  Specially for the phenomenon that amplitude of output voltage signal is modulated by dither bias in the laser gyros consisting of totally reflecting prisms, theoretical analysis and experimental research on the polarization properties of output light in gyro are carried out. Taking the effect of stress birefringence of prism into account, analytical formula of output light intensity in gyro and the relationship between polarization parameter and the amplitude modulation of the output signal are obtained and discussed. For the first time, the polarized power value of output light is adopted as a basis to estimate the output signal amplitude fading extent of laser gyros. Experimental results demonstrate that when the value of polarized power of output light is below 25.5% of that in ideal static case, the standard error is over 0.0337 dBm, and the displacement extent of prism is higher than 53% of radius of the beam waist in gyro cavity, the amplitude modulation extent of gyro output signal can reach up to 16%, which badly influences measurement accuracy of laser gyro. Using this polarized power detecting measurement method can make gyro repaired in its fabricating process immediately, improve the testing and producing efficiency and shorten the product development cycle.
Keywords:  prisms laser gyro      mechanical dither      stress induced birefringence      polarized detection  
Received:  03 July 2012      Revised:  03 August 2012      Accepted manuscript online: 
PACS:  42.81.Pa (Sensors, gyros)  
  46.40.-f (Vibrations and mechanical waves)  
  42.81.Gs (Birefringence, polarization)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA12Z144).
Corresponding Authors:  Yao Cheng-Kang     E-mail:  yaochengkang@126.com

Cite this article: 

Yao Cheng-Kang (姚呈康), Zeng Xiao-Dong (曾晓东), Cao Chang-Qing (曹长庆) Polarization properties in prism laser gyro with mechanical dither bias 2012 Chin. Phys. B 21 124206

[1] Xiong Z Y, Yao Z W, Wang L, Li R B, Wang J and Zhan M S 2011 Acta Phys. Sin. 60 113201 (in Chinese)
[2] Yao C K and Li Q H 2011 Infrared and Laser Engineering 40 1090
[3] Hashimoto T, Maeya J, Fujita T and Maenaka K 2009 Procedia Chemistry 1 564
[4] Yuan B L, Han S L, Yang J Q and Liao D 2011 Journal of Chinese Inertial Technology 19 145 (in Chinese)
[5] Tchertkov I L U.S. Patent 7 458 318 [2009-06-16]
[6] Broslavets Y Y, Zaitseva T E, Kazakov A A and Fomichev A A 2006 Quantum Electronics 36 447
[7] Yao C K, Zeng X D and Cao C Q 2012 Acta Phys. Sin. 61 094216 (in Chinese)
[8] Wan S P, Li F, Wang X F and Zhu Q 2008 Infrared and Laser Engineering 37 728 (in Chinese)
[9] Min F H 2011 Chin. Phys. B 20 100503
[10] Zhang Y, Cao J L, Wu W Q and Gao C H 2011 Adv. Mater. Res. 383-390 6313
[11] Liu Y H and Li H F 2009 Nucl. Instrum. Meth. Phys. Res. A 598 605
[12] Walter K 2006 Solid State Laser Engineering (New York: Springer) p. 205
[13] Faucheux M, Fayoux D and Roland J J 1988 J. Opt. 19 101
[14] Matthew J B and Jean C D 2002 Opt. Commun. 213 331
[15] Wang J J, Jiao Z C and Li R Y 2011 Opt. Commun. 284 5384
[16] Shan C, Wu C Q, Li Z Y, Yang S S, Gao K Q, Yu K L and Feng Z 2011 Chin. Phys. B 20 110201
[17] Cao W J, Xu W C, Luo Z C, Wang L Y, Wang H Y, Dong J L and Luo A P 2011 Chin. Phys. B 20 114209
[18] Rao F J, Chen S F and Fu L 2011 Opt. Commun. 284 1284
[19] Guan Y J, Zhang H M, Liu J and Sun S 2012 J. Mater. Proc. Tech. 212 662
[20] Fan Z F, Luo H and Hu S M 2011 Appl. Opt. 50 3455
[21] Rao W, Zhang N, Xiong S D, Yao Q and Hu Y M 2011 Opt. Fiber Technol. 17 297
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[4] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[5] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[6] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[7] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[8] Wavelength and sensitivity tunable long period gratings fabricated in fluid-cladding microfibers
Wa Jin(金娃), Linke Zhang(张林克), Xiang Zhang(张祥), Ming Xu(徐铭), Weihong Bi(毕卫红), and Yuefeng Qi(齐跃峰). Chin. Phys. B, 2022, 31(1): 014207.
[9] Ultra-longer fiber cantilever taper for simultaneous measurement of temperature and relative humidity
Min Li(李敏), Jiwen Yin(尹辑文), Weili Yan(闫伟丽), Aimin Cong(丛爱民), Hongjuan Li(李红娟), and Wenqiang Ma(马文强). Chin. Phys. B, 2021, 30(11): 114210.
[10] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[11] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[12] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[13] Effect of pressure on the electrical properties of flexible NiPc thin films fabricated by rubbing-in technology
Khasan S Karimov, Fahmi F Muhammadsharif, Zubair Ahmad, M Muqeet Rehman, and Rashid Ali. Chin. Phys. B, 2021, 30(1): 014703.
[14] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
[15] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
No Suggested Reading articles found!