Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120203    DOI: 10.1088/1674-1056/21/12/120203
GENERAL Prev   Next  

Riemann theta function periodic wave solutions for the variable-coefficient mKdV equation

Zhang Yi (张翼)a, Cheng Zhi-Long (程智龙)a, Hao Xiao-Hong (郝晓红)b
a Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China;
b Department of Mathematics, Anhui University, Hefei 230601, China
Abstract  In this paper, a variable-coefficient mKdV equation is considered. Bilinear forms is presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented, and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.
Keywords:  variable-coefficient mKdV equation      Riemann theta function      soliton solutions      periodic wave solutions  
Received:  15 May 2012      Revised:  31 May 2012      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10771196 and 10831003) and the Innovation Project of Zhejiang Province of China (Grant No. T200905).
Corresponding Authors:  Hao Xiao-Hong     E-mail:  zy2836@163.com

Cite this article: 

Zhang Yi (张翼), Cheng Zhi-Long (程智龙), Hao Xiao-Hong (郝晓红) Riemann theta function periodic wave solutions for the variable-coefficient mKdV equation 2012 Chin. Phys. B 21 120203

[1] Zhang Y, Li J B and Lü Y N 2008 Ann. Phys. 323 3059
[2] Li J, Xu T, Meng X H, Zhang Y X, Zhang H Q and Tian B 2007 J. Math. Anal. Appl. 336 1443
[3] Hirota R 1982 J. Phys. Soc. Jpn. 51 323
[4] Hirota R 2004 The Direct Methods in Soliton Theory (Berlin: Springer-Verlag)
[5] Wang M L and Wang Y M 2001 Phys. Lett. A 287 211
[6] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
[7] Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Stud. Appl. Math. 53 249
[8] Hirota R, Hu X B and Tang X Y 2003 J. Math. Anal. Appl. 288 326
[9] Fan E G and Zhang H Q 1998 Appl. Math. Mec. 8 713
[10] Zhang Y and Chen D Y 2004 Chaos, Solitons and Fractals 20 343
[11] Fan E G 2011 Phys. Lett. A 375 493
[12] Ma W X, Li C X and He J S 2009 Nonlinear Anal. 70 4245
[13] Su T and Geng X G 2007 Chin. Phys. Lett. 24 305
[14] Zhang Y, Cheng T F, Ding D J and Dang X L 2011 Commun. Theor. Phys. 55 20
[15] Nakamura A 1979 J. Phys. Soc. Jpn. 47 1701
[16] Fan E G 2009 J. Phys. A: Math. Theor. 42 095206
[17] Fan E G and Luo L 2010 Phys. Lett. A 374 3001
[18] Ma W X, Zhou R G and Gao L 2009 Mod. Phys. Lett. A 24 1677
[19] Zhang Y, Ye L Y and Lv Y N 2007 J. Phys. A: Math. Theor. 40 5539
[20] Zhang Y, Song Y, Cheng L and Wei W W 2011 Nonlinear Dyn. 68 445
[21] Zhang Y, Wei W W, Cheng T F and Song Y 2011 Chin. Phys. B 20 110204
[22] Zhang Y, Ye L Y, Lü Y N and Jin H P 2008 Chin. Phys. Lett. 25 357
[23] Ma W X, Bullough R K and Caudrey P J 1997 J. Nonlinear Math. Phys. 4 293
[24] Ma W X, Bullough R K, Caudrey P J and Fushchych W I 1997 J. Phys. A: Math. Gen. 30 5141
[25] Lü Z S and Xie F D 2010 J. Math. Comput. Model. 52 1423
[26] Sabry R, Zahran M A and Fan E G 2004 Phys. Lett. A 326 93
[27] Malomed B A and Shrira V I 1991 Physica D 53 1
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[3] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[4] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[5] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[6] N-soliton solutions for the nonlocal two-wave interaction system via the Riemann-Hilbert method
Si-Qi Xu(徐思齐), Xian-Guo Geng(耿献国). Chin. Phys. B, 2018, 27(12): 120202.
[7] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[8] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[9] Periodic solitons in dispersion decreasingfibers with a cosine profile
Jia Ren-Xu (贾仁需), Yan Hong-Li (闫宏丽), Liu Wen-Jun (刘文军), Lei Ming (雷鸣). Chin. Phys. B, 2014, 23(10): 100502.
[10] Matter-wave solutions of Bose–Einstein condensates with three-body interaction in linear magnetic and time-dependent laser fields
Etienne Wamba, Timolėon C. Kofanė, and Alidou Mohamadou . Chin. Phys. B, 2012, 21(7): 070504.
[11] Exact analytical solutions of three-dimensional Gross–Pitaevskii equation with time–space modulation
Hu Xiao(胡晓) and Li Biao(李彪). Chin. Phys. B, 2011, 20(5): 050315.
[12] New exact periodic solutions to (2+1)-dimensional dispersive long wave equations
Zhang Wen-Liang(张文亮), Wu Guo-Jiang(吴国将), Zhang Miao(张苗), Wang Jun-Mao(王军帽), and Han Jia-Hua(韩家骅). Chin. Phys. B, 2008, 17(4): 1156-1164.
[13] New periodic wave solutions, localized excitations and their interaction for 2+1-dimensional Burgers equation
Ma Hong-Cai (马红彩), Ge Dong-Jie (葛东杰), Yu Yao-Dong (于耀东). Chin. Phys. B, 2008, 17(12): 4344-4353.
[14] Study on an extended Boussinesq equation
Chen Chun-Li(陈春丽), Zhang Jin E(张近), and Li Yi-Shen(李翊神). Chin. Phys. B, 2007, 16(8): 2167-2179.
[15] New exact solutions to some difference differential equations
Wang Zhen (王振) and Zhang Hong-Qing(张鸿庆). Chin. Phys. B, 2006, 15(10): 2210-2215.
No Suggested Reading articles found!