Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070504    DOI: 10.1088/1674-1056/21/7/070504
GENERAL Prev   Next  

Matter-wave solutions of Bose–Einstein condensates with three-body interaction in linear magnetic and time-dependent laser fields

Etienne Wambaa)†, Timolėon C. Kofanėa), and Alidou Mohamadoub)c)
a Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaound? I, P.O. Box 812, Yaound?, Republic of Cameroon;
b Condensed Matter Laboratory, Department of Physics, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Republic of Cameroon;
c The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, Strada Costiera 11, I-34014, Trieste, Italy
Abstract  We construct, through a further extension of the tanh-function method, the matter-wave solutions of Bose--Einstein condensates (BECs) with a three-body interaction. The BECs are trapped in a potential comprising the linear magnetic and the time-dependent laser fields. The exact solutions obtained include soliton solutions, such as kink and antikink as well as bright, dark, multisolitonic modulated waves. We realize that the motion and the shape of the solitary wave can be manipulated by controlling the strengths of the fields.
Keywords:  extended tanh-function method      Gross--Pitaevskii equation      cubic--quintic nonlinearity      soliton solutions  
Received:  07 December 2011      Revised:  13 February 2012      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
Corresponding Authors:  Etienne Wamba     E-mail:  wambaetienne@yahoo.fr

Cite this article: 

Etienne Wamba, Timolėon C. Kofanė, and Alidou Mohamadou Matter-wave solutions of Bose–Einstein condensates with three-body interaction in linear magnetic and time-dependent laser fields 2012 Chin. Phys. B 21 070504

[1] Theocharis G, Frantzeskakis D J, Kevrekidis P G, Malomed B A and Kivshar Yuri S 2003 Phys. Rev. Lett. 90 120403
[2] Wu L and Zhang J F 2007 Chin. Phys. Lett. 24 1471
[3] Abdullaev F Kh, Abdumalikov A A and Galimzyanov R M 2007 Phys. Lett. A 367 149
[4] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
[5] Shomroni I, Lahoud E, Levy S and Steinhauer J 2009 Nat. Phys. 5 193
[6] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498
[7] Inouye S, Gupta S, Rosenband T, Chikkatur A P, Gorlitz A G, Gustavson T L, Leanhardt A E, Pritchard D E and Ketterle W 2001 Phys. Rev. Lett. 87 080402
[8] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science 292 476
[9] Abo-Shaeer J R, Raman C and Ketterle W 2002 Phys. Rev. Lett. 88 070409
[10] Engels P, Coddington I, Haljan P C and Cornell E A 2002 Phys. Rev. Lett. 89 100403
[11] Staliunas K, Longhi S and de Valc醨cel G J 2002 Phys. Rev. Lett. 89 210406
[12] Velten H and Wamba E 2012 Phys. Lett. B 709 1
[13] Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294
[14] Ieda J, Miyakawa T and Wadati M 2004 Phys. Rev. Lett. 93 194102
[15] Li Lu, Li Z D, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A 72 033611
[16] Atre R, Panigrahi P K and Agarwal G S 2006 Phys. Rev. E 73 056611
[17] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
[18] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer-Verlag)
[19] Al Khawaja U 2006 J. Phys. A: Math. Theor. 39 9679
[20] Moll K D, Gaeta A L and Fibich G 2003 Phys. Rev. Lett. 90 203902
[21] Kevrekidis P K and Frantzeskakis D J 2003 Mod. Phys. Lett. B 18 173
[22] Perez-García V M, Konotop V V and Brazhnyi V A 2004 Phys. Rev. Lett. 92 220403
[23] Li H M and Wu F M 2004 Chin. Phys. Lett. 21 1425
[24] Liu X Q, Jiang S, Fan W B and Liu W M 2004 Communications in Nonlinear Science and Numerical Simulation 9 361365
[25] Brunner M, Dobnikar J and von Grünberg H 2004 Phys. Rev. Lett. 92 078301
[26] Bulgac A 2002 Phys. Rev. Lett. 89 050402
[27] Pethick C J and Smith H 2002 Bose-Einstein Condensation in Dilute Alkali Gases (Cambridge: Cambridge University Press)
[28] Pitaevskii L P and Stringari S 2003 Bose-Einstein Condensation (Oxford: Clarendon Press)
[29] B點hler H P, Micheli A and Zoller P 2007 Nat. Phys. 3 726
[30] Paredes B, Keilmann T and Cirac J I 2007 Phys. Rev. A 75 053611
[31] Fersino E, Malomed B A, Mussardo G and Trombettoni A 2009 Eur. Phys. J. B 68 417
[32] Roy U, Atre R, Sudheesh C, Kumar C N and Panigrahi P K 2010 J. Phys. B: At. Mol. Opt. Phys. 43 025003
[33] Mohamadou A, Wamba E, Doka S Y, Ekogo T B and Kofane T C2011 Phys. Rev. A 84 023602
[34] Wamba E, Mohamadou A and Kofan? T C 2008 Phys. Rev. E 77 046216
[35] Huang W H, Mao J W and Qiu W G 2011 Acta Phys. Pol. A 119 294297
[36] Wu L, Zhang J F and Li L 2007 New J. Phys. 9 69
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[3] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[4] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[5] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[6] N-soliton solutions for the nonlocal two-wave interaction system via the Riemann-Hilbert method
Si-Qi Xu(徐思齐), Xian-Guo Geng(耿献国). Chin. Phys. B, 2018, 27(12): 120202.
[7] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[8] Periodic solitons in dispersion decreasingfibers with a cosine profile
Jia Ren-Xu (贾仁需), Yan Hong-Li (闫宏丽), Liu Wen-Jun (刘文军), Lei Ming (雷鸣). Chin. Phys. B, 2014, 23(10): 100502.
[9] Riemann theta function periodic wave solutions for the variable-coefficient mKdV equation
Zhang Yi (张翼), Cheng Zhi-Long (程智龙), Hao Xiao-Hong (郝晓红). Chin. Phys. B, 2012, 21(12): 120203.
[10] Exact analytical solutions of three-dimensional Gross–Pitaevskii equation with time–space modulation
Hu Xiao(胡晓) and Li Biao(李彪). Chin. Phys. B, 2011, 20(5): 050315.
[11] Stabilised bright solitons in Bose—Einstein condensates in an expulsive parabolic and complex potential
Zhang Tao(张涛), Yang Zhan-Ying(杨战营), Zhao Li-Chen(赵立臣), and Yue Rui-Hong(岳瑞宏). Chin. Phys. B, 2010, 19(7): 070502.
[12] Study on an extended Boussinesq equation
Chen Chun-Li(陈春丽), Zhang Jin E(张近), and Li Yi-Shen(李翊神). Chin. Phys. B, 2007, 16(8): 2167-2179.
[13] Exotic interactions between solitons of the (2+1)-dimensional asymmetric Nizhnik--Novikov--Veselov system
Dai Chao-Qing(戴朝卿) and Zhou Guo-Quan(周国泉). Chin. Phys. B, 2007, 16(5): 1201-1208.
[14] The propagation of solitary waves in clouds of Bose--Einstein condensed atoms
Ao Sheng-Mei (敖胜美), Yan Jia-Ren (颜家壬). Chin. Phys. B, 2006, 15(2): 296-300.
[15] New exact solutions to some difference differential equations
Wang Zhen (王振) and Zhang Hong-Qing(张鸿庆). Chin. Phys. B, 2006, 15(10): 2210-2215.
No Suggested Reading articles found!