|
|
Matter-wave solutions of Bose–Einstein condensates with three-body interaction in linear magnetic and time-dependent laser fields |
Etienne Wambaa)†, Timolėon C. Kofanėa), and Alidou Mohamadoub)c) |
a Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaound? I, P.O. Box 812, Yaound?, Republic of Cameroon;
b Condensed Matter Laboratory, Department of Physics, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Republic of Cameroon;
c The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, Strada Costiera 11, I-34014, Trieste, Italy |
|
|
Abstract We construct, through a further extension of the tanh-function method, the matter-wave solutions of Bose--Einstein condensates (BECs) with a three-body interaction. The BECs are trapped in a potential comprising the linear magnetic and the time-dependent laser fields. The exact solutions obtained include soliton solutions, such as kink and antikink as well as bright, dark, multisolitonic modulated waves. We realize that the motion and the shape of the solitary wave can be manipulated by controlling the strengths of the fields.
|
Received: 07 December 2011
Revised: 13 February 2012
Accepted manuscript online:
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
Corresponding Authors:
Etienne Wamba
E-mail: wambaetienne@yahoo.fr
|
Cite this article:
Etienne Wamba, Timolėon C. Kofanė, and Alidou Mohamadou Matter-wave solutions of Bose–Einstein condensates with three-body interaction in linear magnetic and time-dependent laser fields 2012 Chin. Phys. B 21 070504
|
[1] |
Theocharis G, Frantzeskakis D J, Kevrekidis P G, Malomed B A and Kivshar Yuri S 2003 Phys. Rev. Lett. 90 120403
|
[2] |
Wu L and Zhang J F 2007 Chin. Phys. Lett. 24 1471
|
[3] |
Abdullaev F Kh, Abdumalikov A A and Galimzyanov R M 2007 Phys. Lett. A 367 149
|
[4] |
Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
|
[5] |
Shomroni I, Lahoud E, Levy S and Steinhauer J 2009 Nat. Phys. 5 193
|
[6] |
Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498
|
[7] |
Inouye S, Gupta S, Rosenband T, Chikkatur A P, Gorlitz A G, Gustavson T L, Leanhardt A E, Pritchard D E and Ketterle W 2001 Phys. Rev. Lett. 87 080402
|
[8] |
Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science 292 476
|
[9] |
Abo-Shaeer J R, Raman C and Ketterle W 2002 Phys. Rev. Lett. 88 070409
|
[10] |
Engels P, Coddington I, Haljan P C and Cornell E A 2002 Phys. Rev. Lett. 89 100403
|
[11] |
Staliunas K, Longhi S and de Valc醨cel G J 2002 Phys. Rev. Lett. 89 210406
|
[12] |
Velten H and Wamba E 2012 Phys. Lett. B 709 1
|
[13] |
Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294
|
[14] |
Ieda J, Miyakawa T and Wadati M 2004 Phys. Rev. Lett. 93 194102
|
[15] |
Li Lu, Li Z D, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A 72 033611
|
[16] |
Atre R, Panigrahi P K and Agarwal G S 2006 Phys. Rev. E 73 056611
|
[17] |
Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
|
[18] |
Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer-Verlag)
|
[19] |
Al Khawaja U 2006 J. Phys. A: Math. Theor. 39 9679
|
[20] |
Moll K D, Gaeta A L and Fibich G 2003 Phys. Rev. Lett. 90 203902
|
[21] |
Kevrekidis P K and Frantzeskakis D J 2003 Mod. Phys. Lett. B 18 173
|
[22] |
Perez-García V M, Konotop V V and Brazhnyi V A 2004 Phys. Rev. Lett. 92 220403
|
[23] |
Li H M and Wu F M 2004 Chin. Phys. Lett. 21 1425
|
[24] |
Liu X Q, Jiang S, Fan W B and Liu W M 2004 Communications in Nonlinear Science and Numerical Simulation 9 361365
|
[25] |
Brunner M, Dobnikar J and von Grünberg H 2004 Phys. Rev. Lett. 92 078301
|
[26] |
Bulgac A 2002 Phys. Rev. Lett. 89 050402
|
[27] |
Pethick C J and Smith H 2002 Bose-Einstein Condensation in Dilute Alkali Gases (Cambridge: Cambridge University Press)
|
[28] |
Pitaevskii L P and Stringari S 2003 Bose-Einstein Condensation (Oxford: Clarendon Press)
|
[29] |
B點hler H P, Micheli A and Zoller P 2007 Nat. Phys. 3 726
|
[30] |
Paredes B, Keilmann T and Cirac J I 2007 Phys. Rev. A 75 053611
|
[31] |
Fersino E, Malomed B A, Mussardo G and Trombettoni A 2009 Eur. Phys. J. B 68 417
|
[32] |
Roy U, Atre R, Sudheesh C, Kumar C N and Panigrahi P K 2010 J. Phys. B: At. Mol. Opt. Phys. 43 025003
|
[33] |
Mohamadou A, Wamba E, Doka S Y, Ekogo T B and Kofane T C2011 Phys. Rev. A 84 023602
|
[34] |
Wamba E, Mohamadou A and Kofan? T C 2008 Phys. Rev. E 77 046216
|
[35] |
Huang W H, Mao J W and Qiu W G 2011 Acta Phys. Pol. A 119 294297
|
[36] |
Wu L, Zhang J F and Li L 2007 New J. Phys. 9 69
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|